1. The Substring Array Convention for Binary
Tables

Note: This convention applies to the TFORMn keyword in bi-
nary tables, as discussed in section 7.3.1

1.1. Preface

’100A:SSTR8/032’ signifies that the field is 100 char-
acters wide and consists of an array of variable-
length substrings where each substring has a maxi-
mum length of 8 characters and, except for the last
substring, is terminated by an ASCIl SPACE (deci-
mal 32) character.

Note that simpleFITS readers that do not understand this

The convention described here for representing arrays art chSubstring convention can ignore thEORM characters following
acter strings within a character array field if@Sbinary table therA and can interpret the field simply as a single long string.

was first described in an appendix to & Sbinary table defini-

The following rules complete the full definition of this con-

tion paper (Cotton, Tody, & Pence, 1995, Astron. & Astrophy¥ention:

Suppl., 113, 159), and subsequently in Appendix B of Version
2 of the FITS Standard document. This material was removed-
from Version 3 of the-ITS Standard, with the expectation that
this convention would instead be documented in the Regidtry
FITS Conventions that is maintained by the IAJTS Working
Group. Section 2, below, is reproduced nearly verbatim ftioen
above mentioned appendix in tRETS Standard with only minor
editorial changes.

1.2. Convention Definition 3.

This “substring array” convention may be used to specify tha
a character array fieldlfORMn = ’rA’) consists of an array ,
of either fixed-length or variable-length substrings withhe
field. This convention utilizes the option described in EH&S
Standard to have additional characters following the giptat
code character in thEFORMn value field. The full form for the
value of TFORMn within this convention is

"rA:SSTRw/nnn’

and a simpler form that may be used for fixed-length substring
only is 5

rAw
where

r is an integer giving the total length including any de-
limiters (in characters) of the field,

A signifies that this is a character array field,

: indicates that a convention indicator follows,

SSTR indicates the use of this “Substring Array” conven-
tion,

wis an integek r giving the (maximum) number of char-
acters in an individual substring (not including the
delimiter), and

/nnn if present, indicates that the substrings have
variable-length and are delimited by an ASCII text
character with decimal valuenn in the range 032 to
126 decimal, inclusive. This character is referred to
as the delimiter character. The delimiter character for
the last substring will be an ASCII NUL.

To illustrate this usage:

’40A:SSTR8’ signifies that the field is 40 characters
wide and consists of an array of 5 8-character fixed-
length substrings. This could also be expressed using
the simpler form a$40A8’

In the case of fixed-length substrings,rifis not an in-
teger multiple ofw then the remaining odd characters are
undefined and should be ignored. For exampl&HORMn
=’14A:SSTR3’, then the field contains 4 3-character sub-
strings followed by 2 undefined characters.

2. Fixed-length substrings must always be padded with lslank

if they do not otherwise fill the fixed-length subfield. The
ASCII NUL character must not be used to terminate a fixed-
length substring field.

The character following the delimiter character in vialéa
length substrings is the first character of the following-sub
string.

. The method of signifying an undefined or null substring

within a fixed-length substring array is not explicitly defh

by this convention (note that there is no ambiguity if the
variable-length format is used). In most cases it is recom-
mended that a completely blank substring or other adopted
convention (e.g: INDEF’) be used for this purpose although
general readers are not expected to recognize these as unde-
fined strings. In cases where it is necessary to make a distinc
tion between a blank, or other, substring and an undefined
substring use of variable-length substrings is recommende

. Undefined or null variable-length substrings are des@pha

by a zero-length substring, i.e., by a delimiter charaater (
an ASCII NUL if it is the last substring in the table field) in
the first position of the substring. An ASCII NUL in the first
character of the table field indicates that the field contains
defined variable-length substrings.

. Section 7.3 of Version 3 of the FITS Standand document dis-

cusses a syntax using tfiIMn keyword for describing mul-
tidimensional arrays of any datatype which can also be used
to represent arrays of fixed-length substrings. For a simple
one-dimensional array of substrings (a two-dimensional ar
ray of characters) the substring array convention desdribe
here is preferred over the “multidimensional array” conven
tion (using theTDIMn keyword). Higher dimensional arrays
of (fixed-length) strings cannot be represented using this s
string array convention and so require the use of the mulltidi
mensional array convention.

. This substring convention may be used in conjunction with

the variable-length array feature in binary tables. In taise,
the two possible full forms for the value of tiT&ORM key-
word are
TFORMn = ’rPA(emay) :SSTRw/nnn’
TFORMNn = ’rPA(emap : SSTRw’

for the variable and fixed cases, respectively.

1.3. Usage Notes

The simpler 'rAw’ form of this convention has been
supported by the CFITSIO FITS interface library
(httpy/heasarc.gsfc.nasa.gbiisio/) since 1996 and has
been used in some publicly distributediTS files produced by
various projects. The longérA: SSTRw/nnn’ form has rarely
been used, and, as far as currently known, never for arrays of
variable-length strings.

2. Spatial Region File Convention

[need to obtain the Latex source file from Arnold Rots]

3. The SIP Convention for Representing Distortion Let f(u, v) andg(u, v) be the quadratic and higher-order terms of

in FITS Image Headers the distortion polynomial. Then

3.1. Preface x\ [CD1.1 CD1.2 \{u+ f(u,Vv) (1)
. y]~ \cb2_1 cp22 J| v+ g(u,Vv)

This convention was submitted to the registry by David Shup

and Richard Hook in September 2008. The SIP convention was We defineA_p_q andB_p_q as the polynomial cd&cients for
originally used by the Spitzer Science Center (SSC) in isgm polynomial termsaPvd. Then
ing products. The SIP convention is supported by WCSTOOLS

(written by D. Mink), the Starlink AST library, and the IDL f(u,v) = ZA_p_qupvq, P+ < A ORDER, @)
ASTROLIB library. Tools that use these libraries (e.g., dsd Y]

the GAIA Graphical Astronomy and Image Analysis Tool) in-

herit support for SIP. Also, the drizzle program and reldteds g(u,v) = Z B_p_quPV¥, p+q < B_ORDER. (3)
developed by STScl and ST-ECF, and the astrometry.net-astro oY

metric calibration service use SIP.
For example, for a third-order polynomial,

3.2. Introduction f(u,v) = A2.0U° +A_0_2V2 + A_1_1uv+ A_2_1U%V+ A_1_2uv + A3.0u° +.

The Simple Imaging Polynomial, or SIP, convention providesA_ORDER andB_ORDER can take on integer values ranging from 2
straightforward means for storing distortion informatiofrITS to 9.

image headers. SIP was initially developed before the launc ThecDi_j keywords encode skew as well as rotation and scal-
of the Spitzer Space Telescope. Images from thepitzer instru- ing. The CD-matrix values together with the higher-ordstat-
ments are distorted by a few percentrelative to a regulagskly tion polynomials, as in Equatioli$ [, 2, add 3, define a unique
This distortion, expressed as a function of pixel positismell- transformation from pixel coordinates to the plane-ofj@ction.
represented by polynomials, and it was desired to storeitie d For Spitzer, we also provide polynomials for the reverse
tortion information in the FITS headers of each Basic Caliel transformation, for fast inversion. Corrected pixel caonates
Data (BCD) product. Writing the céicients for each image wasU, V are found from

motivated particularly by the optics of the Multiband Imiagi

Photometer for Spitzer (MIPS) instrument (Rieke et al. 2604 (U) _ CDl(X) 4)

the distortion changes with scan mirror position, and hérma \4 y

one image to the next. the original pixel dinat ted b
The development of the SIP convention proceeded Eﬂe” € original pixel coordinates are computed by

parallel with work on the World Coordinate System (WCS&&_ _ P\/q
FITS standard. The first two papers in this series (Greisen & U+F(U,V) = U+ZAP_p_qU V%, P+ < APORDER, (5)
Calabretta 2002, “Paper 1”; and Calabretta & Greisen 2002, pa

“Paper I1”) specifying the WCS keywords (sans distortioayé = B Pv/a

been approved by the IAU FITS Working Group and are now™ V+G(U.V) = V+ZBP_p_qU V%, p+q < BP_ORDER.(6)
standard. “Paper V" addressing distortion has been dtafte Pa
(httpy/www.atnf.csiro.afpeoplgmcalabraNVCsindex.html) 14 make a reasonably accurate reverse transformatiomirale
but is not yet final. The SIP keywords are compliant with thg i necessary to include linear terms in the reversefimients.
first two papers, and have been influenced by early discussion rina)y horrowing another idea from a Paper IV draft, the
of Paper IV, but are distinct from the proposed keywords ipes of the keywords DMAX andB_DMAX give bounds on the

Paper IV. maximum distortion over the array. These optional keywords

This document is an expanded version of a paper presenigg|d he used to estimate the maximum error that wouid result
at the 2004 ADASS conference (Shupe et al. 2005). The authgsy not evaluating the distortion polynomial.

of that paper include the main contributors to the formolati
and initial implementation of the SIP convention. The datiimn .
of distortion codficients for the Spitzer MIPS instrument using3-4. Example: Spitzer-IRAC Channel 4

this convention are described in Morrison et al. 2007. We take as an example the distortion of taitzer Infrared
Array Camera (IRAC) instrument (Fazio et al. 2004), which is
3.3. Definitions of the Distortion Keywords characterized by cubic cficients. Polynomial distortion of this
form (plus linear terms) was fit t8pitzer data from the Great
The SIP convention derives its name from the four Charact@ﬁservatories Origins Deep Survey program (S Casertano, p
‘-SIP' that are appended to the values@fYPE1 andCTYPE2. yvate communication). The linear terms are folded intodbiej.

These extra characters were included in early drafts of Papg excerpt from an actual BCD header produced by the Spitzer
IV to denote the distortion representation; however, ldtafts pipeline for IRAC Channel 4 is shown below.

dropped this form. We chose-SIP’ to be distinct from the

‘-PLP’ that was to be used in Paper IV for polynomials, and be&TYPE1

cause it has the useful mnemonic “Simple Imaging PolyndmiaCTYPE?2
We defineu, v as relative pixel coordinates with origin atCRVAL1

CRPIX1, CRPIX2. Following Paper Il,x,y are “intermediate CRVAL2

world coordinates” in degrees, with origin @VAL1, CRVAL2. CRPIX1

"RA---TAN-SIP’ / RA---TAN with distortion
"DEC--TAN-SIP’ / DEC--TAN with distortion
202.581507417836 / [deg] RA at CRPIX1,CRPIX2
47.2465528124827 / [deg] DEC at CRPIX1,CRPIX
128. / Reference pixel along axi

CRPIX2
(D1_1
CD1_2
(p2_1
(D2_2

b
o
=
(=)
=
=
|

|
==

>
I

wNhNNRrRrRreObwNNNNRErRrR

W:Den—\ewn—\wwr?_j»en—\ewn—\ww
=

'U"U"U'U"U"U'U“U"U'Ul“\j"\j'U"U“U'U"U“U'U"UI
WNNRRR@eOWNNRRRO O R

=

= |
2]
il

wwwwwwwwUuw:>:>:>:>:>:>:>:>:>:>wwwwwwwww:>:>:>:>:>:>:>:>l

@R NrHRrwNRrRUerRraea N R wNR O M

0.000232107213140475 / Corrected CD matrixC

9
4
4
-1

-6.4708E-0

3/
.0886E-06 /
.8066E-09 /
.8146E-05 /
.7096E-07 /
2.82E-05 /
.3336E-08 /
.8684E-07 /

2.146 /

.8188E-0

= 0.000232418393583541 / Corrected CD matrix
= -0.000246562617306562 / Corrected

128. / Reference pixel aloH§YWRid 2 Value | Keyword Value
0.000248349650353678 / Corrected CD matrixC&i®ifent with PBATREMY RECon ggg ’DEC--TAII@P&
gf"ient with Pointin gﬁ%#’n CRVAL2 -72.076963036772
X chreent wi 8%8& BeESGET p2.1 1.1406694624771E-05
ted (D matrigpplement yighoPodnbingrReca oy 8.6942510845452E-06
polynomial order, axig,l, deteqpe¥osssH¥oE-06 | B0 2 -7.2299995118730E-06
distortion coefficignt; -5.194753640575E-06 | B_1_1 6.1778338717084E-06
distortion coefficigrte 8.543473309812E-06 | B_2_0 -1.7442694174934E-06
distortion coefficiarst3 1.0622437604068E-11 | B_6_3 ~4.2102920235938E-10
distortion coefficiAnlt?2 -5.2797808038221E-10 | B_1.2 -6.7603466821178E-11
distortion coefficidmel ~4.4012735467525E-11 | B.2.1 -5.1333879897858E-10
distortion coefficilmt) - o 14 | Bo4 6 5931313110898E 16
?;i;:i;lﬁgxﬂﬁifg; 3 -1.9317154005522E-14 | B.13 1.3892905568706E-14
) & 3.767898933666E-14 | B.2.2 -2.9648166208490E-14
polynomial order, axis,2, deteqgkgfoihaM3e-15 | B.3.1 -2.0749495718513E-15
distortion coefficignitg 2.5776347115304E-14 | B.4.0 ~1.812610418272E-14
distortion coefficignirprr 4 | B_ORDER 4
d?swrt?on Coeff?ci’SBI'% 1. SIP codficients for the Hubble ACS Wide Field
distortion coeffic
. . . nel.
distortion coefficient
distortion coefficient
distortion coefficphag the SIP distortion cdiécients in the Spitzer Science Center

-1
-2
6

-7

.0084E-1
1.60

.5089E-
.0219E-
.4625E-
1.849E-0

3/
5/
7/
57
8/
6/
7/
0/
6/
3/
6/
6/
9/
5/
57/
7/
5/
8/
7/
3/
57/
57
7/
6/
57/
8 /
6/
7/
.6669E-10 /

[pixel] maximum copffdird! Support has also been added to IPAC’s Skyview

polynomial
distortion
distortion
distortion
distortion
distortion
distortion
distortion
distortion
distortion
polynomial
distortion
distortion
distortion
distortion
distortion
distortion
distortion
distortion
distortion

order, gjflay. Skvogrrdetegiggwww.ipac.caltech.edSkyview).
coeffichefly Mink implemented Spitzer distortion support in his
coefficypms routines (hitg/tdc-www.harvard.edsoftwargwcstools).
Coeff}c;?ﬂ@image and DS9 use these routines and hence automat-
coefficiemyy handle the SIP distortions. The Montage software
coefficiiemi;/montage.ipac.caltech.edu) (Laity et al. 2004) also uses
Coeff}cl!_«ﬁﬁk’s routines and applies the cfhieients. Support in the
coeffic@yyp viewer has been added via David Berry’s AST library.
coefficygiithe Landsman has added support to the IDL ASTROLIB.
coefficipetDrizzle software (Fruchter & Hook 2002) has also been
order, pxddifidd tkieddtiedeehpsents.

Coeff?c?enfﬁinally we note that the astrometry.net service also uses th
coeffick@Btoonvention for encoding the non-linear parts of theodist

coefficgght it calculates in arbitrary images.
coefficient

coefficient
coefficBaemtSIP for Hubble

coefficient
coeffic§dihe cameras currently on board the Hubble Space Telescope

coefficthadistortion is largest by far for the Wide Field ChanneR@)
of the Advanced Camera for Surveys (ACS) where it amounts to
more than fifty pixels at the corner of the image in additioarno

In this case, the reverse dhieients have the opposite sign ancven larger (linear) skew term. The newer Wide Field Camera 3
roughly the same absolute values as the correspondingrfdrwé® be installed in October 2008, has similarly large digbors.
codficients. However, this is not true for some more distorted The image distortion for Hubble cameras is currently char-
fields of view, so the Spitzer headers retain the reverséicoeacterized by a FITS table known as the Image Distortion
cients in general.
The Spitzer Science Center has developed library routinesstale and orientation of the instrument aperture in thetelee
implement this coicient naming scheme. The functions kdly o focal plane as well as the distortion polynomial fiagents.
the extendedTYPEn. The order in which the keywords are dis-Software has been developed that will combine the IDCTAB
played in the example is the order in which the software $egrc information with the normal information from the telescpe

for them and is the mostigcient for lookups using CFITSIO.

3.5. Software that Reads and Applies the Coefficients

Correction Table (IDCTAB) that includes information abdig

pointing control software to write out a header which makes t
header WCS keywords fully compatible with the table values
and also populates the SIP-keywords (or at least the mostrimp
tant ones). An example of the resultant header is given iteTab

The usefulness of this convention was greatly enhancedey B

generous forts of a number of individuals who added support

Currently the writing of these SIP keywords is an unsup-

to their software before the first releaseSpitzer data in 2004. ported feature for Hubble data. However, it is planned te for
The mosaicking package MOPEX (Makovoz & Khan 2005) apnally include such headers in future to provide users withlla f

self-describing distortion model without the need for @sc cients become small and must be specified in scientific otati

external files in non-standard formats. The software to tead with large negative exponents.

codficients and apply them to remove image distortion already An alternative solution to avoid loss of accuracy, or over-

exists within the standard Hubble data processing tools. flow or underflow problems, is to introduce a scaling term so
that pixel values are scaled into the rangeto +1. This could
quite easily be done with by adding an optional keyword, that

3.7. Issues and Caveats defaults to 10 in order not to invalidate existing headers.

) .) Another comment we have received is that the form of the
The_SIP convention has been in use for.several years and is Ik@ywords is relatively simple, so much so that someone else
coming more widespread. To gauge feelings about it we rbcer}tn-ﬁ’ht accidentally use one of the distortion keywords for an

have asked for comments from several people who have usegfer hyrpose elsewhere in the FITS header, thereby cimgupt
for and are familiar with its features. We are grateful fogith e Gistortion information.

input and time. In this section we summarize some possiie li
itations of the standard.

The SIP specification provides for “reverse” @ida@ents to

allow the mapping of sky coordinates to pixels to be perfameye have also asked for views about possible extensions to SIP
rapidly, without the need for iterative inversion techréquThe g |imitation of this current convention is that only regul
Spitzer mosaicking tool MOPEX relies on the reverseftoe ,ynomials are allowed — not Chebyshev or Lagrange for ex-
cients for its default interpolation mode, as it maps oufpxél 5yje A a result higher-order polynomials can divergdat t
Com.erf. baﬁk to the ongmal distorted images. ghe revemiya; P edges of images where they are less well constrained and this
nomial is, however, only an approximation and in generat capy g cause diiculties under some conditions. However, adding
not be the exact inverse of the forward polynomial. As a r¢rege would be significant work and we do not think it should be
sult mapping a pixel to celestial coordinates and back doés Rqngjgered at present. If these were implemented, we weatd r
yield back precisely the original coordinates. For example mend a dterent three-letter sfix for CTYPE1 and CTYPE2,

the IRAC channel 4 distortion listed above, mapping pixel cQr some other means to maintain a distinction from the simple
ordinate (1.0,1.0) to the sky and back leads to féedénce of polynomials currently used. P

?b%?t?'om p')ffls'l Itcap b(ta_ argued éh?rt] stutc:j[ﬂ;ed:.nce IS negt;- In the current convention the distortion origin is forced to
tl)gl e for prgtct: Ica ﬁpp Ications, an 2 [[srlorélonagnntl)(t e at(CRPIX1, CRPIX2).However, in many cases it is natural
€ measured 1o such accuracy anyway. Ahother drawback 10 e gistortion center to lie at afiiérent location. It has been

reverse cofficients is that they violate the principle of storingy . ested that additional keywords could be used to sptagfy
only the minimum information necessary in the FITS he""derdetortion center, and if these are not present then theutlefa

the forward coéficients could be considered to contain all th%f (CRPIX1, CRPIX2) is used. Although the introduction of a

necessary information. different center may have advantages there are also significant
A better approach, in hindsight, might have been to not igrawbacks and some of the simplicity of the original schesne i

clude the “reverse” cdicients at all, but instead to invert thelost. In particular, th&€D matrix would no longer contain a cor-

forward solution using an interative technique. For anteaby rect description of pixel scales, skew and orientation efpibint

polynomial, it might not be possible to guarantee convergen(CRPIX1, CRPIX2). We note that it is always possible to ex-

of the inversion. For practical applications to distortathges, actly shift the distortion origin tCRPIX1, CRPIX2) with the

however, the size of the corrections are small and invesibn result as a polynomial of the same order, although it is pessi

likely work well. It should be noted that the reverse ffméents in extreme cases that this will result in much larger termg an

for the examples given above are very nearly the same as gagsible consequent accuracy loss.

forward codficients with the sign reversed. The starting points

for any iterative inversion are well-determined and thesgoh)

should be reached rapidly. 3.9. Concluding Remarks

Based on these considerations, use of the revergBaerts The SIP convention has proved to be applicable to many ingagin
should be considered optional although this may creatdgmub situations and its simplicity has made implementation asel u
for existing tools such as WCSTools which have already beeasy. Many people feel it is the natural solution withoutesec
coded to use the reverse ¢heents. detail. However, this simplicity naturally limits its geradity and

Another area of concern concerns possible loss of accuré_%ﬁgdy restricts the applicability of SIP to simple cangnan-
in the calculations under some circumstances. In the cdamgef like the much more extensive general proposals in FITS Paper
pixel coordinate values, and high order polynomials, tenge that mclgde mulu-dl'menslonal support that cover far meases
can grow large. In some cases it is necessary to take the @gyond just simple imaging.
ferences between polynomial terms that are much larger than
the final result — a classic case where accuracy can be lostg
clearly helps significantly to use double precision floamint
numbers and hence around 15 significant figures of accuradfe thank Mehrdad Moshir and Bob Narron for their contribu-
We would strongly discourage the use of single precisioritbuttions to the development of the SIP keywords. We are grateful
remains a question for software developers and is not inthoddark Calabretta for significant comments and suggestians, a
by the convention itself. A dsticient number of significant digits Jane Morrison for discussions of MIPS distortions and the CD
should be used to specify the distortion ffagents in the FITS matrix. We thank Doug Mink, Wayne Landsman, David Berry,
header. As shown in the examples above, the high-orddficoeand Booth Hartley for implementing SIP in their software.

3.8. Possible New Features

lfO. Acknowledgments

We are also very grateful to all those who provided help-
ful replies to our requests for comments. In particular &tef
Casertano, Jane Morrison, Emmanuel Bertin, David Berry and
Mark Lacy provided much interesting feedback.

The work carried out at the Spitzer Science Center was
funded by NASA under contract 1407 to the California Insétu
of Technology and the Jet Propulsion Laboratory.

3.11. References

Calabretta, M.R., & Greisen, E.W. 2002, A&A, 395, 1077
(Paper II).

Fazio, G., et al. 2004, ApJ Suppl., 154, 10.

Fruchter, A.S. & Hook, R.N. 2002, PASP, 114, 144

Greisen, E.W., & Calabretta, M.R. 2002, A&A, 395, 1061
(Paper I).

Laity, A.C., Anagnostou, N., Berriman, B., Good, J.C.,
Jacob, J.C., & Katz, D.S. 2005, “Montage: An Astronomical
Image Mosaic Service for the NVO,” in “Astronomical Data
Analysis Software and Systems XIV ASP Conference Series”,
ed. by P. Shopbell, M. Britton, and R. Ebert (San Francisco:
Astronomical Society of the Pacific), vol 347, p. 34.

Makovoz, D., & Khan, I. 2005, “Mosaicking with MOPEX,”,
in “Astronomical Data Analysis Software and Systems XIV ASP
Conference Series”, ed. by P. Shopbell, M. Britton, and RerEb
(San Francisco: Astronomical Society of the Pacific), val, 33
81.

Morrison, J.E., Stamper, B.L., & Shupe, D.L. 2007,
“Correcting MIPS Spitzer Images for Distortion,” in
“Astronomical Data Analysis Software and Systems XVI
ASP Conference Series,”, ed. by R.A. Shaw, F. Hill and D.J.
Bell, Vol 376, p. 433.

Rieke, G., et al. 2004, ApJ Supp, 154, 25.

Shupe, D.L., Moshir, M., Li, J., Makovoz, D., Narron, R.,
& Hook, R.N. 2005, “The SIP Convention for Representing
Distortion in FITS Image Headers”, in “Astronomical Data
Analysis Software and Systems XIV ASP Conference Series”,
ed. by P. Shopbell, M. Britton, and R. Ebert (San Francisco:
Astronomical Society of the Pacific), vol 347, p. 491.

4. A Convention for preallocating header space for controlled environment where all the software is known tp-su
FITS keywords port this convention

4.1. Preface

This convention has been supported by the CFITSIO library
since approximately 1996 and has primarily been used within
the FITS data files produced by high energy astrophysics mis-
sions supported by the HEASARC.

4.2. Background

The ASCII header in every FITS HDU (Header Data Unit) con-
sists of 1 or more 2880-byte blocks, each of which can hold 36
80-byte keyword records. When writing a new keyword to the
header of a FITS file, if the header is full (i.e., the last head
block already contains 36 header records, including the END
keyword) then it becomes necessary to insert a new 2880-byte
FITS block at the end of the header. This in turn requires that
any data in the FITS file following the header be shifted down
by 2880 bytes in the file to make room for the inserted block.
This rewriting operation can cause significant data prongss
inefficiencies when dealing with large FITS files.

One way to circumvent this problem is to preallocate enough
space in the header when the FITS HDU is created to hold the
anticipated number of keywords that may be written duriterla
processing of the FITS file. This document describes a simple
convention for creating an arbitrarily large amount of rese
space in the header that can be used when writing new keywords

4.3. Convention details

Under this convention, any sequence of one or more completel
blank keyword records (consisting of 80 ASCII space charac-
ters) immediately preceding the END keyword are intermtete
as non-significant scratch space, which can be reused winen ne
keywords are written. Thieinctional end of the header is defined
as located at the beginning of this scratch space area, vigich
where each new keyword record is written. In the event tHat al
the scratch space becomes filled with keywords, then thé trad
tional procedure of shifting the END keyword down one space
in the header to make room for the new keyword should be fol-
lowed.

In practice, it is usually most convenient to write the dedir
number of blank keywords into the header just prior to wgtin
the END keyword itself, before writing any actual data retsiio
the FITS HDU. Software that recognizes this convention &hou
then reuse these blank records when writing new keywordeeto t
header. This eliminates the iffieiencies associates with having
to insert a new FITS block into an existing FITS file to make
room for more keywords. Even if some of this reserved header
space remains unused (note that space for 100 keywords only
occupies 8K of disk space), this is usually insignificant whe
dealing with large FITS files.

It should be noted that if a FITS file is processed by software
that does not support this convention, then new keywordsbheay
written at the location of the END keyword (i.@fter the blank
keyword records). This will make the blank keywords unavail
able for future use by software that does support this cdien
and will create what appears to be a gap of blank header key-
words in the header. For this reason it may be safest to use thi
convention on FITS files that are created and processedwéthi

5. TNX World Coordinate System
5.1. Preface

This convention was submitted to the registry in Septemp@®2 1. Compute the first order standard coordinates xi and et
by Doug Tody, Lindsey Davis, and Frank Valdes. The TNX con- linear part of the solution stored in CRPIX and the (D
vention is currently used in the FITS files produced by NOAO

that are taken with a variety of fiérent imaging instruments in- xi
cluding MOSAIC and NEWFIRM since 1998. eta

The TNX projection is evaluated as follows.

(D1_1 * (x - CRPIX1) + CD1_2 * (y - CRPI
CD2_1 * (x - CRPIX1) + CD2_2 * (y - CRPI

[This document is copied from iraf.net <http://iraf.Retiddatdecsgmnkiphprs part of the projection using the co
the WAT keywords as described below.

The TNX World Coordinate System is a non-standard system for evaluating

celestial coordinates from the image pixel coordinates. It follsw$ thexi + Ingcor (xi, eta)

the FITS conventions for undistorted tangent plane projectionsebat addsa + latcor (xi, eta)

a non-linear distortion term to the evaluation. This discussion

concentrates on the non-linear extension and assumes3thAppéydéhe standard tangent plane projection to xi’ amd

understands the FITS WCS conventions including applyingthetGRYAhtvpluas as the tangent point to get the RA an

projection. The reference for the FITS WCS standard fordepdé¢eserNetle that the units of xi, eta, lngcor, and 1

celestial coordinates systems is Representations of celdegia@s.

coordinates in FITS

<http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibkedeendingasAfungdoions7ingdbrkey-asIdhanh-Bdbags Bt fe4a)

Calabretta, M. R., and Greisen, E. W., Astronomy & Betyophyalcfynesdens with coefficients stored as FITS keyw

1077-1122, 2002. (PDF indexed WATj_nnn keywords. The j refers to the image axis
<http://adsabs.harvard.edu/cgi-bin/nph-data_query?bdbeeda=20Qaan26AnunBes . 107¢ceaidk_f9pea ARITCLEG B kEpagsTa
HTML by the sequence number and then concatenated together into

<http://adsabs.harvard.edu/cgi-bin/nph-data_query?b3bribte=208Ra%esene .ngo5ta07dd&3nake sybetigoURNAR ADNRATENST
since the coefficients may be split across strings.

The TNX World Coordinate System projection has a FITBekégngrdtring for each image axis is composed of a set o

representation as illustrated in figure 1. keyword/value pairs where the value is quoted if it contai
Figure 2 shows the how the WAT keywords in figure 1 would
into parameters and coefficients.

Figure 1: Sample header with TNX WCS projection

WCSASTRM= ’ct4m.19990714T012701 (USNO-K V) by F. Valdes 1998i@8r@22:/DWcSmpoaitg the WAT keywords from figure

WCSDIM = 2 / WCS dimensionality

CTYPE1 = ’RA---TNX’ / Coordinate type AXIS 1 AXIS 2

CTYPE2 = ’'DEC--TNX’ / Coordinate type = = ————-------oo----oo-ooo——-o- oo
CRVAL1 = 310.08145293602507 / Coordinate reference velype=tnx wtype=tnx

CRVAL2 = 20.663666538998399 / Coordinate reference vaitigpe=ra axtype=dec

CRPIX1 = 4268.3258 / Coordinate reference plrgtor = latcor =

CRPIX2 = 2256.2481 / Coordinate reference p3xel.

Cb1_1 = -6.8295807e-08 / Coordinate matrix 4. 4.

D2_1 = 7.3313414e-05 / Coordinate matrix 4. 4,

cp1_2 = 7.374228e-05 / Coordinate matrix 2. 2.

CDh2_2 = -1.1927219e-06 / Coordinate matrix -0.3171856965643079 -0.3171856965643079
WATO_001= ’system=image’ / Coordinate system -0.0150652479325533 -0.0150652479325533

WAT1_001= ’'wtype=tnx axtype=ra lngcor = "3. 4. 4. 2. -0-8131866983843609660-013126038394350166
WAT1_002= ’0652479325533 -0.3126038394350166 -0.15119556@0928393504002838106864311955040928311
WAT1_003= ’838772 0.01749134520424022 -0.010827844230201030093188008024838342340:005534819578784082
WAT1_004= ’-4.307309762939804E-4 0.009069288008295441 0.0008742632780444022-00001258790793029932
WAT1_005= ’4487658756007625 -0.1058043162287004 -0.0686204086825836%23020123 0.01016780085575339
WAT2_001= ’'wtype=tnx axtype=dec latcor = "3. 4. 4. 2. -00313889626584602394-00001541083298696018
WAT2_002= ’50652479325533 -0.3126038394350166 -0.15119556480238976896806834£8495¢:03531979587941362
WAT2_003= ’8784082 0.01258790793029932 0.01016780085575389009069286808296940180:0150096457430599
WAT2_004= ’0.03531979587941362 0.0150096457430599 -0.108840038725262348F568599866:1086479352595234
WAT2_005= ’086902122 0.02341002785565408 -0.0777380839328484487658756007625 0.0399806086902122
-0.1058043162287004 0.02341002785565408
The WCSASTRM keyword is just for documentation. The WCSPOMOREORI£A6w3TE767 -0.07773808393244387
always be 2. That this is a TNX projection is indicated by the CTYPE
keywords. These keywords also indicate that the firfheihageé afisoefficients are interpreted as follows.
corresponds to RA and the second to DEC.

10

. The first number is the function type encoded as l=chebyshev,

2=legendre, 3=polynomial. The example has a function ofPmgpe Bm{kinh * Pn(etan) (chebyshev)
is the simple polynomial.

. The next two numbers represent the "order" of the fuR@€xon)in %i®and

eta. The order is the one less than the highest polyRdfixah)powsin
The powers are represented below by m and n such at Bm=1@xin) = 2.0 * xin * Pm(xin) - Pm-1(xin)
xiorder-1 and n = ® to etaorder-1. In the example the orders are 4
which means cubic polynomials (m=0 to 3 and n=0 to 3P0(etan) = 1.0

. The next (fourth) number specifies the type of crossPtérmangncodedn

as 0=no cross-terms, 1=full cross-terms, 2=half-crosBntéfmsanThe 2.0 * etan * Pn(etan) - Pn-1(etan)
cross-terms are terms of xi"m*eta"n where m and n are non-zero. Full
cross-terms mean that both m and n will go to the theirPmaximBm(xin) * Pn(etan) (legendgre)
values independently while half-cross terms mean that m + n will
only go to the maximum of xiorder-1 and etaorder-1. PO(xin) = 1.0
The next 4 numbers describe the region of validity oFPltkén¥itsxin xi
and eta space, e.g. ximin, ximax, etamin, etamax. ThBm+dfgin3ed €Q2m+1) * xin * Pm(xin) - m * Pm-1(xin))/
compute normalized values for xi and eta used in the chebyshev and
legendre polynomial functions: PO(etan) = 1.0
Pl(etan) = etan
xin = (2 * xi - (ximax + ximin)) / (ximax - ximiBd+1(etan) = ((2n+l1) * etan * Pn(etan) - n * Pn-1(eta
etan = (2 * eta - (etamax + etamin)) / (etamax - etamin)
In the example with with a simple polynomial the funct

. The remaining terms are the coefficients of the polymnommadstéohiows.

The functions are evaluated by summing polynomial terms Pmn(xi,eta)

multiplied by the coefficients Cmn as Ingcor/latcor = COO
+ C10 * xi + C20%x1i"2 + C30 * xi”"3
Ingcor(xi,eta) = sum (Cmn * Pmn(xi,eta)) + CO1 * eta + C02*eta”2 + CO3 * eta”3
latcor(xi,eta) = sum (Cmn * Pmn(xi,eta)) + Cl1 * xi*eta + C21 * xi"2%eta + C12 * xi*eta”2

Representing the coeffients as Cmn for the polynomials Pmn, where m
and n are the powers of xi and eta, they are ordered as

coo
C10
Cc20
C30

co1
C11
c21
a1

coz
C12
C22
32

co3
C13
c23
33

In the example with the half cross-terms and orders of 4 the ten
coefficients would be C0O0, C10, C20, C30, CO1, Cl1, C21, C02, Cl2,
and CO03.

The polynomials Pmn are defined below. The chebyshev and legendre
polynomials are define iteratively as functions of the normalized
coordinates defined earlier.

N

Pmn = xi ** m * eta ** n (polynomial)

6. TPV World Coordinate System follows where the variable r is sqrt(xi“2+eta”2). In this
there are only odd powers of r.

6.1. Preface
This convention was submitted to the registry in Septembai.2 xi’ = PV1.O® + PVI_1 * xi + PV1_2 * eta + PV1.3 * r +
by Francisco Valdes. PV1_4 * xi"2 + PV1_5 * xi * eta + PV1_6 * eta’”2

PV1_7 * xi"3 + PV1_8 * xi"2 * eta + PV1_9 * xi

PV1_12 * xi"4 + PV1_13 * xi"3 * eta + PV1_14 *
The TPV World Coordinate System is a non-standard convBMiidA FoxlolwimgPV1_18 * xi"4 * eta + PVI_19 * xi"3 * e
the rules of the WCS standard. It builds on the standaPU1TBN prsjeetioata”3 + PVI_21 * xi * eta"4 + PV1_22 *
by adding a general polynomial distortion correction. The descPY¥pt2én* xi"6 + PV1_25 * xi"5 * eta + PV1_26 *
here covers the application of the distortion functionP¥Ad28s&umés2tlieeta”™4 + PV1_29 * xi * eta”5 + PV1_30 *
reader understands the FITS WCS rules including applying the 1PMéasl * xi"7 + PV1_32 * xi"6 * eta + PV1_33 *
transformation to intermediate coordinates and applyinBVd_8an§eni plineta’4 + PV1_36 * xi"2 * eta”5 + PV1_37
projection to the distortion corrected intermediate coordinates. The
reference for the FITS WCS standard for undistorted celetaia® B¥8r8imak¥2_1 * eta + PV2_2 * xi + PV2_3 * r +
systems is Representations of celestial coordinates in FITS PV2_4 * eta”2 + PV2_5 * eta * xi + PV2_6 * xi"2
<http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=2002AR¥BA7 .* 3052 18 77CRUB_&e{-a5T&RA1i §hxBdb4PB262 f14¢8
Calabretta, M. R., and Greisen, E. W., Astronomy & AstrophysicBV2*3@35% eta”4 + PV2_13 * eta”3 * xi + PV2_14 *

1077-1122, 2002. (PDF PV2_17 * eta”5 + PV2_18 * eta”™4 * xi + PV2_19 * eta"3 *
<http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcBd2=2002A%28A2 .* 395 3077P¥%2iAk_typeaARTICI £&HbPK3y2AST>
HTML PV2_24 * eta"6 + PV2_25 * eta”5 * xi + PV2_26 *
<http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcBU2=2802A%28A2 . % 393 407 7P¥2iA%_typeaE OURNAL&IBVEeFOAST
Reprints are available from the author’s web site PV2_31 * eta”7 + PV2_32 * eta”6 * xi + PV2_33 *
<http://www.atnf.csiro.au/ mcalabre/> in PDF PV2_35 * eta”3 * xi"4 + PV2_36 * eta”2 * xi"5 + PV2_37

<http://www.atnf.csiro.au/people/mcalabre/WCS/ccs.pdf> format.

Note that missing PV keywords default to 0O except for PVI1_
Historically this WCS derives from an earlier propowhichydefaubtretealandlith these defaults if there are no PV
Greisen <http://astromatic.net/forum/attachment.phptaddsfedmainoa dsathe identity and the TPV WCS is equivale
for the celestial coordinates paper. In that proposatandar@ANANrpjegedsaon. Also the defaults mean that the p
would be extended with the optional distortion polyaphyaincludeotlhd beefficients to the order desired. Simila
up to the code to identify the presence of the PV kéymctdenamdyappeyonhg terms in powers of r which then mimi
distortion. Since the final standard does not provideafidard dPNtprejeation.
to the tangent plan projection, the proposal is recast by simply
defining a new WCS identifier and publishing it as Théscoanvanieangondy defines coefficients up to 39 corresp
here. maximum polynomial order of 7.

To implement the inverse transformation requires inverting

Evaluation Steps distortion functions. But using a standard iterative numer
based on the first derivative of the functions is not diff
The TPV projection is evaluated as follows. derivatives of these functions are straightforward to expr

1. Compute the first order standard coordinates xi and eta from the
linear part of the solution stored in CRPIX and the CD matrix.

xi = CD1_1 * (x - CRPIX1) + CD1_2 * (y - CRPIX2)
eta = CD2_1 * (x - CRPIX1) + CD2_2 * (y - CRPIX2)

2. Apply the distortion transformation using the coefficients in the PV
keywords as described below.

xi’ f xi (xi, eta)
eta’ = f_eta (xi, eta)

3. Apply the tangent plane projection to xi’ and eta’ as described in
/Calabretta and Greisen/ . The reference tangent point given by the
CRVAL values lead to the final RA and DEC in degrees. Note that the
units of xi, eta, f_xi, and f_eta are also degrees.

Distortion Functions

The distortion functions shown as f_xi and f_eta above are defined as

11

7. ZPX World Coordinate System The WCSAXES keyword (possible seen as WCSDIM) will always

this is a ZPX projection is indicated by the CTYPE keyword
7.1. Preface keywords also indicate that the first image axis correspon
This convention was submitted to the registry in Septemb#i2 the second to DEC.

by Frank Valdes.
The ZPX projection is evaluated as follows.

The ZPX World Coordinate System is a non-standard syidtefiofiputevihaatingt order standard coordinates xi and et
celestial coordinates from the image pixel coordinates.lime#islpawt efiethe solution stored in CRPIX and the CD
the FITS conventions for a zenithal polynomial projection (ZPN) but adds

an additional two-dimensional polynomial distortion term to the xi = CD1_1 * (x - CRPIX1) + C(D1_2 * (y - CRPI
evaluation. This discussion concentrates on the non-ZPN distortéda = CD2_1 * (x - CRPIX1) + CD2_2 * (y - CRPI
extension and assumes the reader understands the FITS WCS conventions

including applying a zenithal polynomial projection.2ThAddetheenen-fdnear part of the projection using the co
the FITS WCS standard for undistorted celestial coordinakesWA¥skemwoids as described below.

Representations of celestial coordinates in FITS
<http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=2002A%28A .= . 395 . 10¥7dedb_key=AST&high=3db47576c£1413
Calabretta, M. R., and Greisen, E. W., Astronomy & Astrophysiceta*395éfa + latcor (xi, eta)

1077-1122, 2002. (PDF
<http://adsabs.harvard.edu/cgi-bin/nph-data_query?biBcoliep2®orh%28anitB9} .noryaaniak nypsedRTOALEG DL kegnd SEE

HTML described in /Calabretta and Greisen/ where the P/m/ c
<http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcotleaR002n%26Are .396 .dD7ZA&DY nkhe ypreFl AUKNADEADLREégrAST
Reprints are available from the author’s web site keywords. The reference tangent point given by the CRV
<http://www.atnf.csiro.au/ "mcalabre/> in PDF to the final RA and DEC in degrees. Note that the unit

<http://www.atnf.csiro.au/people/mcalabre/WCS/ccs.pdf> Fogmar, and latcor are also degrees.

One thing to note is that generally the radial "pinThashéefifidiensstfon the zenithal polynomial (the P/m/) an
included in the ZPN projection is generally fixed andnpdisé¢bIypdé¥mamdal distortion functions Ilngcor(xi,eta)
by known optical design terms. For NOAO Mosaic datalaésen(WdSeta) are stored as FITS keywords under the index
calibration exposure has different distortion termskéywmrdsttThg ihsefers to the image axis and the nnn give
refraction and other small effects but the calibratfivmbdsesThetcahdagéor a particular image axis are sorted b
the radial polynomial coefficients. number and then concatenated together into one long string
not to add spaces between the concatenated strings since t
The ZPN World Coordinate System projection has a FITSef#&ywoedts may be split across strings.
representation as illustrated in figure 1.
The long string for each image axis is composed of a set o
keyword/value pairs where the value is quoted if it contai
Figure 1: Sample header with ZPX WCS projecFigure 2 shows how the WAT keywords in figure 1 would be d
parameters and coefficients.

WCSAXES = 2 / Number of WCS axes

CTYPE1l = ’RA---ZPX’ / Coordinate type

CTYPE2 = ’DEC--ZPX’ / Coordinate type Figure 2: Decomposing the WAT keywords from figure

CRVAL1 = 320.687374999995 / Coordinate reference value

CRVAL2 = 36.908555555556 / Coordinate reference vAXéi8 1 AXIS 2

CRPIX1 = 4167.56175625891 / Coordinate reference pixet------------------------ -

CRPIX2 = 4120.25894749731 / Coordinate reference pwkgihpe=zpx wtype=zpx

ch1_1 = -5.2588308681025E-8 / Coordinate matrix axtype=ra axtype=dec

CD2_1 = -7.2772379161132E-5 / Coordinate matrix projp0=0. projp0=0.

CD1_2 = -7.2753930850119E-5 / Coordinate matrix projpl=1. projpl=1.

CD2_2 = -1.8637632244742E-8 / Coordinate matrix projp2=0. projp2=0.

WATO_001= ’system=image’ / Coordinate system projp3=337.74 projp3=337.74

WAT1_001= ’wtype=zpx axtype=ra projp0=0. projpl=1. projp2edp4p®ejp3=337.74 proj’ projp4=0.

WAT1_002= ’p4=0. projp5=632052. Ingcor = "3. 3. 3. 2. OpP0OiB?6692058622823 0.29’ projp5=632052.

WAT1_003= ’99113930557312 0.1542460039112511 0.303287385n6808%4 1.9247409545894’° latcor=

WAT1_004= ’95E-5 -1.348328290485618E-5 1.414186703253352E-4 -1.392784764381400F’ 3.

WAT1_005= -4 -1.276226238774833E-4 4.339217671825231E-3."’ 3.

WAT2_001= ’wtype=zpx axtype=dec projp0=0. projpl=1. pro3p2=0. projp3=337.74 pro’ 3.

WAT2_002= ’jp4=0. projp5=632052. latcor = "3. 3. 3. 2. 8.001876397956622823 0.2’ 2.

WAT2_003= ’999113930557312 0.1542460039112511 0.30328738506883649395686888331149° 0.001876397956622823

WAT2_004= ’402E-5 -1.378185066830135E-4 1.55989240147968429991839280547328203771’ 0.2999113930557312

WAT2_005= ’E-4 3.966701903249366E-4 0.001678960379199465 "’ 0.1542460039112511 0.154246003911
0.3032873851581314 0.3032873851581314

12

1.924740954589495E-5 9.963957331149402E-In the example with the half cross-terms and orders of

-1.348328290485618E-5 -1.378185066830135E-doefficients would be C0O0, C10, C20, C30, CO1, Cl1l, C2
1.414186703253352E-4 1.559892401479664E-d4nd C03.

-1.792784764381400E-4 -8.280442729203771E-4

-1.276226238774833E-4 3.966701903249366E-The polynomials Pmn are defined below. The chebyshev a
4.339217671825231E-4 0.00167896037919946p0lynomials are define iteratively as functions of the

coordinates defined earlier.

The list of coefficients are interpreted as follows.

1.

Pmn = xi ** m * eta ** n (polynomial)
The first number is the function type encoded as 1=chebyshev,
2=legendre, 3=polynomial. The example has a function ofPmgpe Bm{kinh * Pn(etan) (chebyshev)

is the simple polynomial.

. The next two numbers represent the "order" of the fuR@fxon)in %i®and

eta. The order is the one less than the highest polyRdfixaih)powsrin
The powers are represented below by m and n such at Bm=1@xin) = 2.0 * xin * Pm(xin) - Pm-1(xin)
xiorder-1 and n = ® to etaorder-1. In the example the orders are 4
which means cubic polynomials (m=0 to 3 and n=0 to 3P0(etan) = 1.0

. The next (fourth) number specifies the type of crossPtérmangncodedn

as 0=no cross-terms, 1l=full cross-terms, 2=half-crosBntéfmsanThe 2.0 * etan * Pn(etan) - Pn-1(etan)
cross-terms are terms of xi"m*eta"n where m and n are non-zero. Full

cross-terms mean that both m and n will go to the theirPmaximBm(xin) * Pn(etan) (legendgre)
values independently while half-cross terms mean that m + n will

only go to the maximum of xiorder-1 and etaorder-1. PO(xin) = 1.0

. The next 4 numbers describe the region of validity oFltken¥itsxin xi

and eta space, e.g. ximin, ximax, etamin, etamax. ThBm+dfgin3ed €Q2m+1) * xin * Pm(xin) - m * Pm-1(xin))/
compute normalized values for xi and eta used in the chebyshev and
legendre polynomial functions: PO(etan) = 1.0
Pl(etan) = etan
xin = (2 * xi - (ximax + ximin)) / (ximax - ximiBd+1(etan) = ((2n+l1) * etan * Pn(etan) - n * Pn-1(eta
etan = (2 * eta - (etamax + etamin)) / (etamax - etamin)
In the example with with a simple polynomial the funct

. The remaining terms are the coefficients of the polymnommadstéohiows.

The functions are evaluated by summing polynomial terms Pmn(xi,eta)

multiplied by the coefficients Cmn as Ingcor/latcor = COO
+ C10 * xi + C20%x1"2 + C30 * xi”"3
Ingcor(xi,eta) = sum (Cmn * Pmn(xi,eta)) + CO1 * eta + CO2*eta”2 + CO3 * eta”3
latcor(xi,eta) = sum (Cmn * Pmn(xi,eta)) + Cl1 * xi*eta + C21 * xi"2%eta + C12 * xi*eta”2

Representing the coeffients as Cmn for the polynomials Pmn, where m
and n are the powers of xi and eta, they are ordered as

coo
C10
Cc20
C30

co1
C11
c21
a1

coz
C12
c22
32

Cco3
C13
c23
33

13

8. The FITS Green Bank Keyword Convention
8.1. Preface

date, then instead of having a single DATE-OBS keyword in the
header of the table, one could add a column to the table tisat ha
TTYPENn="DATE-OBS'’ to store the specific date value for each

This FITS keyword convention was developed at a meeting iW. This concept of expanding a keyword into a table column
October 1989 at Green Bank, West Virginia to discuss stahdd@r conversely, collapsing a column of identical values asin-
FITS formats for interchange of single dish radio astronongje header keyword) is now generally known as the Green Bank
data. This convention was originally developed to spedifica keyword convention.

address the issue of how to represent World Coordinate 1@yste
(WCS) information for images that are stored within a vector
column of a FITS binary table (or what was then called a FITS
‘3-D’ table), but the concept has since been generalizedvte h
wider applications.

8.2. Original Green Bank Keyword Convention

This keyword convention originally applied to cases where a
FITS binary table contains only a single multidimensionehga
field, or where the table contains several array fields, lay &l
have the same dimensions. The dimensions of each array colum
are defined by the TDIMn keyword, which has the form:

TDIMn = ’(i,j,k,...)’
wheren is the column number of the multidimensional array in
the binary table, and j, k, ... are the integer dimensions of the
array, expressed in the same order as in arrays in the Foran
gramming language. Since the WCS parameters for the images
(e.g.,CTYPEI, CRPIXi, CRVALI, etc.) may have dlierent values in
each row of the table, in general it is necessary to exparskthe
keywords into table columns, where the column names are the
same as the keyword name. Thus,

— TTYPEn = 'CTYPEi’ means that the name of the physical
coordinate of the axisin the array contained in the table is
given in columm of the table.

— TTYPEn = ’CRPIXi’ means that the value of the reference
point for axisi in the array contained in the table is given in
columnn of the table.

— TTYPEn = 'CRVALi’ means that the value of the physical
coordinate for axis at the reference point in the array con-
tained in the table is given in colummof the table.

Similarly, any other needed WCS parameters are represented
as additional columns in the table.

In the special case where a WCS parameter has the same
value in every row of the table, it is not necessary to expaed t
standard WCS keyword into a column. For example, if every im-
age in the multidimensional array column HZRPIX1 = 256,
then it is more #icient to represent this with a sing®PIX1
header keyword, instead of definingRPIX1 column, with the
same value of 256 in every row.

It should be noted that this convention pre-dates the devel-
opment of the special forms for the WCS keywords that are
specifically designed for use with images stored in multitim
sional array columns in a binary table (e.CTYPn' instead of
"CTYPEn’). Refer to the WCS section of the FITS Standard for
more information about these keywords.

8.3. Generalized Green Bank Keyword Convention

The same principle that is used to expand a WCS keyword into
a table column can be applied to any parameter whose value is
different in each row of the binary table. For example, if the in-
formation given in each row of the table correspond tofiedent

14

9. The ESO HIERARCH Keyword Convention with the full stop character (“."). For example, the hietrc
cal keyword shown above corresponds to the variable name

9.1. Preface ESO.TEL.FOCU.SCALE while the following keyword,

This keyword name convention has been used within the FITS , , .

data files produced by ESO since approximately 1990. HIERARCH ESO INS OPTI-3 ID = 'ESO#427 * / Optical elem
corresponds to the variable ESO.INS.OPTI-3.ID. The re-

9.2. Convention Description verse translation is applied when converting such vargioi

To avoid possible misinterpretations and naming conﬂich!TS HIERARCH keywords,

S oL This hierarchical structure provides a convenient andrclea
for keywords describing data acquisition parameters, E%E ; . ; .
(the European Organization for Astronomical Research @ t ay to separate information concerningfdfent subsystems.

. h . he definition of FITS keywords used by ESO for data acqui-
Sout.hern Hermsphere) developed' a hlerarch|cal keyword C%ri}ion can be found in tr?/e Data Interfa)::e Control Docurr?ent
vention for this purpose. Under this convention, the FIT$- kei%]ttp;//archive.eso.ovgicb).This documentalso gives a full def-

word name (bytes 1 through 8 of the keyword record) is: : . ? ;
HIERARCH, and byte 9 contains a space character. Since fA40" Of the hierarchical keywords in the ESO name space.

HIERARCH keyword does not have the * value indicator in
bytes 9 and 10 of the keyword record, it is in the same cladgas t
COMMENT and HISTORY keywords that do not have a formal
value. Thus, FITS readers that do not support the HHERARCH
convention, as described in more detail below, should sjirmg|
terpret bytes 9 through 80 of the keyword record as contginin
commentary text.

Under the HIERARCH keyword convention, bytes 10
through 80 of the keyword record contain a series of ASCII
strings, or tokens, that serve to hierarchically clasdify key-
word, followed by an equals sign£") which is in turn followed
by the keyword value field. An optional comment field may fol-
low the value field, separated by a slasti)€haracter. The value
and comment fields conform to the rules for free-format key-
words, as defined in the FITS Standard document.

The HIERARCH keyword structure is illustrated below:

HIERARCH token_1 token_2 ... token_n = value / comment

The first token following the HIERARCH keyword name is
the ‘name space’ token, which defines the top level domaimeof t
following tokens. The name space token has the value “ES©O” fo
all the hierarchical keywords defined within that orgarizata
different unique domain name should be defined by any other or-
ganizations that uses this convention. (Currently, it appé¢hat
ESO is the only organization that uses this convention).

The other tokens following the name space token and preced-
ing the equals sign character define the hierarchical ilcestson
of the keyword. Any number of levels are allowed (as long as
they all fit within the 80-character keyword record), but nag
tice, ESO keywords generally have 3 hierarchical levelsctvhi
specify the general category, the subsystem, and the pteame
name, respectively. For example, in the following keyword:

HIERARCH ESO TEL FOCU SCALE = 1.489 / (deg/m) Focus length = 5.36"/mm

the domain= ESO, the category TEL, the subsysterm FOCU,
and the parameter nameSCALE.

Under the ESO implementation of this convention, each to-
ken string that precedes the equals sign must only contair ch
acters that are legal in formal FITS keywords, i.e., the upgee
letters A through Z, the digits O through 9, and the hyphen and
underscore characters. The tokens may, however, be Idmayer t
the 8 character limit of formal FITS keywords.

In some circumstances it may be convenient to map the
hierarchical keywords into program variable names by con-
catenating the hierarchical tokens together, separatiegnt

15

10. The CONTINUE Long String Keyword FITS reading software that supports this convention should
Convention take the following steps when reading a string-valued kegwo

10.1. Preface 1. Test if the last non-space character in the keyword value
This conventions for continuing the value of a charactengtr string is an ‘&’ character. If true, then the keyword value
keyword over multiple header records was originally depetb may be continued on the next keyword record in the FITS
by the HEASARC in 1994. It has been extensively used within header, if the following conditions are true:

the FITS data files produced by numerous high energy astro- — the next keyword in the header has the nalORTINUE,

physics missions. and
— bytes 9 and 10 of the keyword contain spaces &ian
. byte 9), and
10.2. Introduction — bytes 11 through 80 contain a character string enclosed
The CONTINUE long string keyword convention may be used to in single quote characters, optionally preceded and fol-
assign a character string value to a FITS keyword that isdong lowed by space characters, and optionally followed by a
than the 68-character limit for the value of a single FITS-key forward slash character and a comment string,

word. Under this convention, the long string value is didde 2. If all these conditions are true, then the charactergtoim
into multiple substrings, each of which is no longer than 67 this CONTINUE keyword should be appended onto the char-
characters in length. The first substring is written as tHeeva acter string from the previous keyword(s), after first dalpt
of the user-specified keyword, and the the remaining sutgstri the ‘&’ character from the previous string.

are written to a sequence of keywords that all have the keywog- Repeat steps 1 and 2 to continue assembling the long key-
nameCONTINUE. word value until the required conditions are no longer true.

The following additional points regarding this long string

keyword convention should also be noted:

The following steps should be taken when writing long string

keyword values using this convention: — If a string keyword value ends with the ‘&’ character, but is

not immediately followed by a conformingONTINUE key-

1. Divide the long string value into a sequence of smaller sub word, then the ‘&’ character should be considered as the lit-
strings, each of which is no longer than 67 characters in eral last character in the string.
length. (Note that if the string contains any literal single— If a FITS reader encountersCQNTINUE keyword that is not
quote characters, then these must be represented as a paipreceded by a string keyword (or anotfGNTINUE key-
of single quote characters in the FITS keyword value, and word) whose value string ends with the ‘&’ character, then
these 2 characters must both be contained within a single thatCONTINUE keyword should be ignored (i.e., it should be
substring). interpreted the same a<@GMMENT keyword).

2. Append an ampersand character (‘&) to the end of each sub- The following example (in which #AXVOLT keyword has
string, except for the last substring. This character seage somehow been inserted between SVALUE keyword and

10.3. Detailed Syntax of the Convention

aflag to FITS reading software that this string vatoey be it's continuation keyword) illustrates both of the above€o
continued on the following keyword in the header. ditions:
3. Enclose each substring with single quote characters: Non
significant space characters may occur between the amper-syaiyg = ’This is a long string value &’
sand character and the closing quote character. MAXVOLT = 12.5

4. Write the first substring as the value of the user-specified coNTINUE ’continued over 3 lines.’
keyword.

5. Write each subsequent substring, in order, to a seriesyaf k
words that all have the nan@®NTINUE in bytes 1 through 8
and have space characters in bytes 9 and 10 of the keyword
record. The substring may be located anywhere in bytes 11
through 80 of the keyword record and may be preceded by ‘orphaned’ CONTINUE keyword should be treated like a
non-significant space characters starting in byte 11. A com-

ment string may follow the substring; if present the com- COMMENT keyword
g may 9. mp — FITS readers that do not support this convention should trea

rlnsn;irg?arrg%féPfilfgx:aaéedafgng;?g ;:téﬁtgﬂgrg)ét;tr l(?aSt any CONTINUE keywords (which have no value indicator in
P y byte 9 and hence have no formally defined value) in the same

An example of this long string keyword convention is shown Way asCOMMENT keywords. ,
— This convention isot recommended for use with reserved

Because the requirements of the CONTINUE convention
are not met in this case, FITS readers should interpret the
SVALUE keyword as a simple string-valued keyword, in-
cluding the final ‘& character in the value string, and the

below: or mandatory FITS keywords (e.§TYPEn or EXTNAME, or
SVALUE = ’This is a long string value &’ other commonly used keywords because of the likelihood
CONTINUE ’extending& ’ of confusion by software applications that do not support
CONTINUE °’ over 3 lines.’ this convention. It is recommended that this conventioy onl

be used for new application-specific keywords, the values of
which are not critical to the general interpretation or unde

SVALUE = ’This is a long string value extending over Starydieg of the contents of the FITS file.

This example is equivalent to the following single keyword:

16

10.4. LONGSTR Keyword

It is recommended that the following keywords be added to the
header of any HDU that uses this long string convention:

LONGSTRN= ’OGIP 1.0’ / The OGIP long string convention may be used.

COMMENT This FITS file may contain long string keyword values that are
COMMENT continued over multiple keywords. This convention uses the ’'&’
COMMENT character at the end of a string which is then continued
COMMENT on subsequent keywords whose name = *CONTINUE’.

The presence of theONGSTRN keyword serves to indicate
that long string keywords may be present in the FITS file. The
value of this keyword gives the name and version number of
the specific convention that is used, which in this case is the
OGIP ((tice of Guest Investigator Programs, at the HEASARC)
long string convention, version 1.0. The value of this keyahis
a string so that it may be used to give the name of any other
convention that the FITS community might adopt.

17

11. Keywords for Describing the Minimum and

arrival time, position, an@r energy of a detected photon. For

Maximum Values in Columns of FITS Tables example, if a particular CCD photon counting detector is byL2
384 pixels in size, then the location of each photon in thég’ch
11.1. Preface coordinate system would have an X coordinate ranging from 1

This convention was develop by the HEASARC in 1993 to gdo 512 and a Y coordinate ranging from 1 to 384. Other coordi-

scribe the minimum and maximum values in columns of a FIT&

te frames could also be defined, such as a 'detector’ auatedi

ASCII or binary table. It has been extensively used in pakiic system which might be defined so that the origin is cgntered on
within the FITS data files produced by many high energy astril chip. The FITS header keywords appropriate for this aese

physics missions.

11.2. Keyword Definitions XTENSION
TPIX
XIS

AXIS1

NAXIS2

— TDMINn Keyword: The value field shall contain a numbePCOUNT
giving the minimum physical value contained in column §COUNT
of the table. This keyword is analogous to the DATAMINIFIELDS
keyword that is defined in the FITS standard for use withXTNAME
FITS images. TTYPEL

— TDMAXn Keyword: The value field shall contain a numbef FORM1
giving the maximum physical value contained in column ATYPE2
of the table. This keyword is analogous to the DATAMAXIFORM2
keyword that is defined in the FITS standard for use with! YPE3
FITS images. TFORM3

— TLMINn Keyword: The value field shall contain a num-TTYPE4
ber giving the minimum legally defined physical value thatf ORM4
might be contained in column n of the table. TLMIN1

— TLMAXn Keyword: The value field shall contain a num-TLMAX1
ber giving the maximum legally defined physical value thaiL-MIN2
might be contained in column n of the table. TLMAX2

minimum and maximum values in columns of a FITS ASCII o

The following 4 optional keywords may be used to describe t>§
binary table:

TLMIN3

The following conventions should be followed in the use dfLMAX3
these keywords: TLMIN4
TLMAX4

— The 'physical value’ is defined as the value after applyireg thrpMIN1
TSCALnN and TZERORn linear scaling keywords, if present.TDMAX 1
— These keywords are not applicable to columns containimgMIN2
ASCII strings or logical data. TDMAX2
— These keywords should have the same data type as the phys-

shown below:

’BINTABLE’

"EVENTS
’CHIPX
T1I
"CHIPY
11

"DETX ’
T1I

"DETY ’
T1I

16
34803

1
512
1
384
-256
255
-192
191
17
510
6
378

NGNS N

/
/
/
/
/
/
/
/
/
/
/
/
/
/
/

binary table extension
8-bit bytes

2-dimensional binary tabl
width of table in bytes
number of rows/events
size of special data area
one data group (required
number of columns in each
name of this binary table
Chip coordinatess

format of column 1

Chip coordinates

format of column 2
Detector coordinates
format of column 3
Detector coordinates
format of column 4
minimum legal value in co
maximum legal value in co
minimum legal value in co
maximum legal value in co
minimum legal value in co
maximum legal value in co
minimum legal value in co
maximum legal value in co
minimum actual value in c
maximum actual value in c
minimum actual value in c
maximum actual value in c

ical values in the associated column (either an integer or a The CHIPX and CHIPY columns in this example give the

floating point number).

photon location in the chip reference frame, and the DETX and

— These keywords apply to all the elements of a vector columDETY columns give the location in the detector referencefra

— Any undefined elements (or any other IEEE special valuesin The TLMINn and TLMAXn keywords give the allowed
the case of floating point columns in binary tables) should bgnge of values in each column. The TDMINn and TDMAXn
excluded when determining the value of these keywords. keywords are given for the first 2 columns in this example, to

— The TLMINn and TLMAXn keywords define the allowedillustrate that the actual range of values in the column mesd
legal range of the column values; there is no requirement thver the entire allowed range. The TLMINn and TLMAXn key-
the column actually contain any or all of the allowed valuesyords are often used to define the default binning range when

— Itis permissible to have values in the column that are leggeating a histogram of the values in the column(s). To eraat
than TLMINN or greater than TLMAXn; the interpretation2D image from the CHIPX and CHIPY columns, the TLMINn
of any such out-of-range column elements is not defined Byid TLMAXn keywords for those columns indicate that the his-
this convention. togram bins should cover the coordinate range from 1 to 512 in

— If TDMINn is greater than TDMAXn, or TLMINn is greater the X direction, and from 1 to 384 in the Y direction to create
than TLMAXn, then this should be taken to mean that then image of the entire chip. To make a similar image from the

pair of keywords are undefined.

DETX and DETY columns, the bins would need to cover the

coordinate range from -256 te255 in X, and -192 te+191 in

11.3. Examples

the Y direction (i. e., the first pixel in the lower left cornef
the binned image would record the number of events that have

These keywords are commonly used in event list tables intwhiDETX = -256 and DETY= -192). It is important to note that
each row of the table describes an event, such as the measthed/alues in the columns are allowed to exceed the ranga give

18

by TLMINn and TLMAXn. For example, any anomalous photon
events might be assigned a chip coordinate of (-1, -1), toere
the histogramming algorithm should be prepared to deal with
such outliers.

In practice, the TDMINn and TDMAXn keywords have
been rarely used in publicly archived data sets. In contrast
the TLMINn and TLMAXn keywords are widely used, espe-
cially in the event list data files that have been produced by
ROSAT, Chandra, XMM-Newton, INTEGRAL, and other X-ray
and gamma-ray astrophysics missions since about 1994.

19

12. FITS Header Inheritance Convention plication, but, for example, all the extension keywords Idou
be copied into a structure in memory, and then the keywords
12.1. Preface from the primary array could be appended to it. The value of

This convention has primarily been used in FITS data files pri"® INHERIT keyword should be set to F after the keywords
duced and distributed by the Space Telescope Scienceutfestit’@ve been merged. The mandatory primary array keywords
and by NOAQKPNO beginning in 1995. It has also been useff:9: BITPIX, NAXIS, and NAXISn) and any COMMENT,
within data files from various instruments and data pipeliopg- HISTORY, and blank keywords in the primary header are never

erated by, or partly by, the United Kingdom, such as MWFC inherited. If the same keyword is present in both the primary
UKIRT/WECAM and ESQVISTA/VIRCAM. " header and the extension header, the value in the extension

header shall take precedence. If an application modifiegtue

of an inherited keyword in an extension, the value of that key
12.2. INTRODUCTION word in the primary header is noffacted (i.e., the application
must explicitly change the value of the primary header keywo

There are many instances of FITS data files where the saff@ ot is desired).

set of keywords (e.g. 'TELESCOP’ or INSTRUME’) are dupli-
cated with the same value in every extension of a multi-esiten
FITS file. It would be desirable in such cases to write the key2.4. PRACTICAL CONSIDERATIONS

word only once, and have it be shared by every extension in e disadvantage to using this convention is that it may be ha
file. One (usually minor) benefit would be to reduce the size 9 9 y

the file, but more importantly, this would avoid duplicatinépr- 0 pres;grv?ntheftsvspraralt:lo? O)f(t?ne ani?;y land ex;[ﬁ nS|?1nd;|(?ar?_
mation in the file. This can cause problems with, for examplé?ywo S IN Sofware. --or exampie, sSimply copying an exte

; . n to a new file could cause the primary and extension key-
ggggT&ccﬁggsé%Sfo\;vg c?rqii ;at\’/aenré/ymstance of the keyword WOL\ﬁvi?)rds to be merged, thusfectively negating the benefits of this

The INHERIT keyword convention was developed to ad(gonvention unless the software takes special care to dishél
dress these issues by allowing the extensions in a FITS fite-to ?uto_mat;]c errltance atnclj pflphpaga;';]es the primary he?de?ran
licitly inherit the keywords in the primary header; thiepents rension Neader separately. 1hus, the convenience of nolrveq
P ! two keyword lookups has been transferred to an inconve-

.) . in
needless repetition of keywords in each extension headker E?'Pgnce of trying to preserve the separation in the face aj-aut
provides a mechanism for software to easily access keywo Stic merging of the two

E;r:)?vgﬁiosr?glrﬁ) (\j/vgitrrtlaet% ngﬁﬂgnsto?t)\(/\t/i?:ﬁg‘?rlen uﬂ:g‘;f{fg’téhe Another practical issue is that in applications where the by
q in the FITS file are interpreted serially (e.g., on tape oelngt

ask only once for the value of a specific keyword for a given e 1644s) . the reader would need to cache the primary heade
tension (rather than explicitly doing two keyword lookupsg '

: g -~ in case it turns out that a later extension in the file uses the
for the extension and one for the primary header). By usiigy H]NHERIT convention

convention software can treat the primary and extensioddrsa Another drawback is that users may become confused when

as dfectively one logical header. dding or modifying keywords to files with this conventiofi. |
This convention was developed in 1995 and is extensivelye yevwords have become inadvertently duplicated (i, a
used in FITS files produced at the STScl for data sets froip.qent in hoth the primary and extension headers) and e us
the the later genration of instruments on the Hubble Spagg,qifies the primary keyword, they are surprised that no gaan
Telescope, including STIS, NICMOS, and ACS. Software SUR the keyword value has taken place (because the extension

port for this convention has been builtinto the IRAF FITS gaa ;
kernel (Zarate & Greenfield 1996). This convention confi ;/alue takes precedence). Users may also become confused if

b di ; dat ¢ duced by NOAO. It is al hﬁy use a mixture of software tools, some of which show the
€ Used in various data sets produced by - LIS aIS0 USRf{arited keywords in the extension header and others that d
by various instruments and data pipelines operated by, rdypano

. . t support this convention.
by, the United Kingdom, such as IMNFC, UKIRT/WFCAM : ; -
and ESQVISTA/VIRCAM. Potential future users of this convention should carefully

consider whether the benefits outweigh the disadvantages in
their particular situation.

12.3. IMPLEMENTATION DETAILS

The INHERIT keyword in an extension header shall have a Io§-2-5- REFERENCES

ical value of T or F to indicate whether or not the current exzarate, N & Greenfield, P 1996, "A FITS Image Extension
tension should inherit the keywords in the primary headéhef kerne| for IRAF” Astronomy DataAnalysis Software and
FITS file. The INHERIT keyword shall be defined in the eXSystems V’ ASP Conference Seriesy Vol. 101

tension header immediately after the mandatory keywordis. T
Inherit Convention should only be used in FITS files that have
null primary array (e.g., with NAXIS 0) to avoid possible con-
fusion if array-specific keywords (e.g., BSCALE and BZERO)
were to be inherited. If INHERIZFF in an extension header, the
keywords from the primary header should not be inherited.
When an application that supports this convention reads an
extension header with INHERIE T, it should merge the key-
words in the current extension with the primary header key-
words. The exact merging mechanism is left up to the ap-

20

13. FITS Foreign File Encapsulation Convention files. These are the "FG” keywords. The FG keywords are used
13.1. Pref in both FOREIGN type extensions and in standard FITS exten-
L. Freface sions such as IMAGE, BINTABLE, and so on.

This convention was developed at NOA®NO in 1999 mainly FG_.GROUP (string) - Each time a file group is written a
to encapsulate graphics files into FITS files in the NOAO Hig@roup name is assigned. The group name associates all of the
Performance Pipeline System. elements of a group. Assuming the group name is unique then
this can be used to associate all the extensions in a group for
) later restoration. This is useful if groups are concataehatea
13.2. Introduction larger sequence of extensions. The group name is arbitiey (

This document describes a FITS convention developed by fhdllename) and is assigned by the user when the file group is
IRAF Group (D. Tody, R. Seaman, and N. Zarate) at the Natiori4[itten. For example, a group name for a directory tree mght
Optical Astronomical Observatory (NOAO). This conventisn the name of the root directory. It is up to the writer program t
implemented by the fgregigwrite tasks in the IRAF fitsutil @Ssign a group name if the user does not predefine one.
package. It was first used in May 1999 to encapsulate preview FG-FNAME (string) - The filename of the file associated

PNG-format graphics files into FITS files in the NOAO Highvith the current extension. The maximum filename length is 67
Performance Pipeline System. characters. Any printable character except apostropheriaip

ted. For an extension of type FOREIGN where the file type is
]] directory, FGFNAME is the name of the directory.
13.3. FOREIGN File Extension FG_FTYPE (string) - The physical file type. The following

AFITS extension of type 'FOREIGN’ (henceforth a "FOREIGNYPES are recognized:
file extension” or just "FOREIGN extension”) provides a mach
nism for storing an arbitrary file or tree of files in FITS, aliog

it to be restored to disk at a later time. Each FOREIGN extensi
contains a single file. This mechanism also provides a means f
associating a group of FITS extensions of any type. Certhin o
the file attribute keywords can be included in the header gf an
FITS file or extension to support such things as storing acedire
tory tree containing images, tables, and other non-FIT8syjd
files in a multi-extension FITS file, and later restoring theole
tree to disk. The motivation for this extension is to allowiam
plementation based on the FITS multi-extension mecharism t
encapsulate and pass non-FITS data. The FOREIGN extension
may be used to store a file from any type of operating system £ MTYPE (string) - The logical or "mime” type of the file
(e.g. UNIX or Windows), however some of the specific file a ptional).

tributes that are recorded in the FOREIGN extension keyword " £ | EVEL (integer) - The directory nesting level. All of the
may not map completely betweenffdrent systems (e.g. thefes in 5 directory are at the same level. FOREIGN extensions
UNIX filemode string that may be recorded in the FMODE ¢4y 6 directory are used to name the directories at eaehdev

keyword does not have an exact counterpart under Windows),, .« :
: A pathnames can be reconstructed (this scheme assuahes th
The header of a FOREIGN FITS extension must begin W'éﬁe extensions in a file group are ordered). Level O (zerdjds t

the following five keywords in the specified order with no inte root directory of the file group. The root directory is unname

— "text” - Afile containing only text. Stored 8 bits per charact
using newline to delimit lines of text (like Unix).

"binary” - Any file which is not a text file or one of the known
file types. Stored as a byte stream without any conversion.
"directory” - implementation dependent

"symlink” - implementation dependent

— "FITS” - a native FITS extension

— "FITS-MEF” - a native multi-extension FITS (MEF) file. No
count of the number of extensions in the MEF file is given,
rather the MEF group consists of all subsequent extensions
until a FITS extension is encountered which starts a new file.

vening keywords. and is implicitly the user’s current working directory inttich
_) the file in the FOREIGN extension would be unpacked. When
1 XTENSION= ’FOREIGN . . ! .
2 BITPIX = 8 packing files into FOREIGN FITS extensions, the current work
3 NAXIS = 0 ing directory could be a logical choice for the F&EROUP file
4 PCOUNT = <filesize> / file size in B{R@EName. o ,
5 GCOUNT = 1 FG_FSIZE (integer) - The size in bytes of the data portion
) of the file. This value is always identical to the value of the
EXTNAME = ’<filename>’ PCOUNT keyword. In the case of a file with a FI/PE value

equal to "directory”, the FG-SIZE value is zero.

Some early implementations of the FOREIGN extension re- FG_FMODE (string) - The file mode as a string ("rwx-rwx-
versed the order of the PCOUNT and GCOUNT keywords, bowx”, bits not set given as "-")
this usage is now deprecated. The optional EXTNAME keyword FG_FUOWN (string) - The file UID (user ID) as the file
is used only to identify the extension in listings. To restarfile owner name string.
to disk the "FG” (file group) keywords are used as outlined in FG_FUGRP (string) - The file GID (group ID) as the file
the following section. group name string.

FG_CTIME (string) - The file creation time as a UTC value
. expressed as an ISO 8601 string.
13.4. File Group (FG) Keywords FG.MTIME (string) - The file modification time as a UTC
To be able to later unpack FOREIGN extensions and restof@ue expressed as an ISO 8601 string.
files to disk, a number of keywords must be added to the ex- FG.COMP (string) - This keyword will not be used initially,
tension headers to store the information required to redtuer but is reserved in case we choose to implement file (e.g. gzip)

21

compression in the archiver. The value would be a string suchtrwrwr zarate
as "none” or "gzip”. In the meantime files can be archived in

compressed form by compressing them beforehand and arcHiy> fgwrite r* /tmp/fg.fits

ing the compressed files as binary files. Part of the reason we
are reluctant to implement compression in the archiveras thfi> fxh /tmp/fg.fits # See the FITS file contents (single
archive data may last indefinitely and it is hard to guaratitae EXT# EXTTYPE
the compressed data will be readable a decade or two in the /tmp/ft.fits
future. We might need to avoid compression for archival data FOREIGN

unless the compression algorithms amdcode are part of the 2 FOREIGN
archive as well. (This discussion refers only to foreigrsfileot 3 FOREIGN
to compressed images). 4 FOREIGN

5 FOREIGN

13.5. Examples

implementation of this convention using the tasks fgreatifgn
write from the external package fitsutil. These utilities aurit-

ten in C and are not tied to any IRAF system library.
The IRAF fitsutil external package contains the fgg

6952 Aug 8 15:02 readf_save

EXTNAME EXTVER

rdf.o 1
rdf_plio.c 1
readf_save 1
read_plio 1
read_plio_save 1

Create a FITS file with th

BITPIX
8

0 00 00 0 O

Example 2: Here are the values of some of the k€& words
The following examples are taken from actual runs on the IRABr the case where the FITS file contains files that were aaibin
in the tky directory and the tidir2 subdirectory.

EXT# FG_FNAME

write/fgread tasks to write and read FOREIGN extensions. tki
These are scripts that call the native C programs fgwritece ap max.o
fgread.e with the following arguments: 3 dir2
fgwrite [t jtbdsfm¢] [0 itbdsfm¢] [vdih] [g igroupame¢] [f 4 list.txt
outputfits_file] [input_files] 5 home. txt
Switches: f write to named file, otherwise write to stdout ¢ gmttolst.c
d print debug messages 7 a.c
v verbose; print full description of each file 8 varg.c
g FG.GROUP name. The default is the root directory name max.c

t select file types to include in the output file
o skip file types from input files selection

h do not produce primary HDU

i write Table Of Contents in primary HDU

s calculate CHECKSUM and DATASUM for the input file
fgread [t jtbdsfm¢, [o jtbdsfm¢] [n ranges] [vdxrf] [f fitsfile

[files]

where ranges is of the form 1,2,5,8-11

Switches:

d print debug messages

f read from named file rather than stdin

n get list of extension numbers to extract

0 omit the indicated FITS types (tbdsfm)

r replace existing file at extraction

s check CHECKSUM if keywords are present
tinclude the indicated FITS types (tbdsfm) only
v verbose; print full description of each file

x extract files

The possible file types are

t: text

b: binary

d: directory

s: symbolic link
f: single FITS file

m: multiple extension FITS file (MEF)

files in a directory.

fi> dir r* 1+

brwrwr zarate
trwrwr zarate
Xtrwrwr zarate
Xtrwrwr zarate

22

3616 Aug 14 9:23 rdf.o
6489 Aug 14 10:30 rdf_plio.c
6952 Aug 14 10:31 read_plio

FG_FTY

direct
binary
direct
text
text
text
text
text
text

13.6. Implementation Notes

PE FG_LEVEL FG_FSIZE

0
1616
0

69

ory 1
2
2
3
3 1113
2
2
2
2

ory

1243
770
284
372

FG_FMODE

drwxrwxrx

IWIWr use
drwxrwxrx

rWrwr use
IWIWr use
rwrr user
rWrwr use
IWIWr use
IWIWr use

The following design notes refer to the fgwrite and fgreask$a
in the IRAF fitsutil package, and provide some additional-con
text and background information relating to the originaltive>
tions for the FOREIGN extension.

The fgwrite and fgread programs as used in the telescope
data handling system are host callable (Unix) level tasks.

Sample syntax:

fgwrite jflags¢, jinput-file-template-liste,

fgread iflags¢, jinput-file¢,

The intention is not to provide a general file archive capabil
ity, but rather to be able to use FITS to carry along and aechiv
some non-FITS auxiliary data. A secondary goal is to geireral
FITS somewhat so that directories can be handled (archivéd a
later restored) as well as linear file templates.

Since the goal is not to provide a general file archive capa-
bility, certain details are not addressed: symlinks toadodes
are not followed by the writer; unlike tar, hard links are pos-
served; special files are ignored.

Selected task options:

Input-file-template-list is a sequence of file names or direc
Example 1: Create a FITS file containing an arbitrary set &1y names (if it is a unix task, any templates will alreadyéa
been expanded by the shell).

There should be an option to fgwrite specify the types of
files to be archived; when descending a directory, a file lista
will not handle this. Hence some mechanism such as which of
the possible supported file types (tbdsf), or a pattern niragch
template such as in "find -name”, would be used to select the

files to be archived.

6903 Aug 13 14:43 read_plio_save OutputFile Format

The output host file (or byte stream) is a conventional FITS
file consisting of a sequence of one or more FITS extensions,
optionally preceded by a dataless primary header unit (Rt¢d)
scribing the entire file. Writing of the PHU may be disabledrmv
if a file is being written to disk (e.g. when writing a sequente
extensions to be concatenated).

Foreign files (text, binary, directory, symlink) are wrages
single extensions with XTENSIONFOREIGN'. Single FITS
images without extensions are converted to IMAGE exterssion
writing a single extension to the output stream.

Multi-extension FITS files in the input are written unchadge
except that keywords are added to the first HDU to identify the
MEF group (subsequent extensions are merely copied to the ou
put stream unchanged). If the first HDU in the input file is a PHU
it is converted to an IMAGE extension. The order of the exten-
sions in the output stream must match that in the input MEF for
the MEF to be later restored to disk. The PHU and all exterssion
in the input MEF are still visible in the output file; their as$
ation as an MEF grouping is evident only by examining the FG
keywords in the HDU. Any internal MEF associations, such as
for inheritance, are still present, but might not be recegdiby
most software until the MEF group is later restored to a file.

By default the output stream will have a dataless PHU de-
scribing the contents of the file (this can be disabled as men-
tioned above). The PHU may optionally include a table of con-
tents for the output file. If a TOC is generated this will regui
that the output file list be fully processed to determine thpet
and size of each input file, before writing out the PHU with TOC
followed by the input data files. This might be desirable ig an
case to simplify the code (construction of the input file tiah
be separated from file conversion and output).

23

14. Checksum Convention A string containing only 1 or more consecutive ASCII blanks
may be used to represent an undefined or unknown value for the
14.1. Preface DATASUM keyword. TheDATASUM keyword may be omitted in

The Checksum convention was developed in 1994 and has bE&H/S that have no datarecords, butitis preferable to irethe

widely used to verify the entegrity of FITS files produced bifeéyword with a value of 0. Otherwise, a missiDTASUM key-
manyyobservatoriesf.y gny P ord asserts no knowledge of the checksum of the data records

14.2. Introduction 14.4. CHECKSUM Keyword

The checksum keywords described here provide an integritp€ Value field of theCHECKSUM keyword shall consist of an
check on the information contained MTSHDUs. (Header and ASCII character string whose value forces the 32-bit 1's com
Data Units are the basic components of FITS files, consistiRigment checksum accumulated over the enftiféS HDU to
of header keyword records followed by optional associated d €qual negative 0. There are a vast number of possible charac-
records). Th&HECKSUM keyword is defined to have a value thater strings that could satisfy this requirement, but forsake of
forces the 32-bit 1's complement checksum accumulatedaiiverconsistency and uniformity it is recommended that the padti
the 2880-byte=ITSlogical records in the HDU to equal negativdar 16-character string generated by the algorithm desdrib
0. (Note that 1’s complement arithmetic has both positive athe appendix be used. A string containing only 1 or more con-
negative zero elements). Verifying that the accumulateztich Secutive ASCII blanks may be used to represent an undefined or
sum is still equal to -0 provides a fast and fairly reliableywaunknown value for th€HECKSUM keyword.
to determine that the HDU has not been modified by subsequent
data processing operations or corrupted while copyingoirgl ; .
the file on physical media. The checksum does not guard agal'%éﬂ CHECKSUM Keyword Implementation Guidelines
organized transformations or malicious tampering, howéd& 14.5.1. Overview
cause simple transformations, such as rearranging the ofde
32-bit words in the file, do notfeect the computed checksumChecksums are used to gain confidence in the continueditytegr
value. The checksum also does not provide any information 6hall sorts of data. The normal procedure is to calculate the
the authenticity of the file because tGBECKSUM keyword can checksum of the data on the transmitting side of some cormmuni
always be updated after making modifications to the file,itegav cation channel (including magnetic media) and later to can@p
no trace that the file is not the same as the original. A brigf-co that checksum with the recalculated checksum on the recgivi
parison with alternative checksum algorithms is giveg4n6. side. The original checksum is transmitted separately ther
Two FITSkeywords are reserved to record the checksum if@me communication channel.
formation in an HDUDATASUM and CHECKSUM. Normally both This scheme works foF/TSdata as for other data, but sep-
keywords will be present in the header if either is preseut, barating the checksum from tiie TSfile limits its utility, espe-
this is not required. These keywords apply only to the HDU igially for archival storage. It is also hard to see just hovirnto
which they are contained. If ttGHECKSUM keywords are written corporate a separate checksum intoEeS standard.
in one HDU of a multi-HDUFITSfile then it is strongly recom- The Internet checksum (ref. 5-7) resolves the similar prob-
mended that they also be written to every other HDU in the fillem of embedding a checksum within each IP packet by forcing
In that case the checksum accumulated over the entire file wifle 1's complement checksum of the entire packet to equal zer
equal -0 as well. Itis recommended that the current dateiared t This is accomplished by writing the complement of the calcu-
be written into the comment field of both keywords to documetfdted checksum into each packet instead of the checksuli itse
when the checksum was computed (or more precisely, the time A 1's complement checksum is preferable to a 2’s comple-
that the checksum computation process was started). ment checksum (as used by the Usixn command, for exam-
ple), since overflow bits are permuted back into the sum and
therefore all bit positions are sampled evenly. A 32-bit ssias
14.3. DATASUM Keyword quick and easy to calculate as a 16 bit sum due to this symmetry
The value field of th®ATASUM keyword shall consist of a char- providing greater sensitivity to errors (s¢&.6).
acter string containing the unsigned integer value of théi82 Arranging to write a binary number into BITS file is
1's complement checksum of the data records in the HDU (i.@nattractive and limiting. However, the properties of contan
excluding the header records). For this purpose, each Bg&0- tivity and associativity that make the Internet checksurmko
FITS logical record should be interpreted as consisting of 720e first place, also make it possible to generalize the igalen
32-bit unsigned integers. The 4 bytes in each integer must\wigth an ASCIl encoding that may be embedded withif/&S
interpreted in order of decreasing significance where thetmbeader keyword (ref. 1).
significant byte is first, and the least significant byte id.las Although it is advantageous to store the checksum comple-
Accumulate the sum of these integers using 1's complemenént within each HDU, the only place where that can be done,
arithmetic in which any overflow of the most significant bit isvithout violating the standard, is in the header. As a conse-
propagated back into the least significant bit of the sum. guence, one has to be cognizant of the fact that this meahanis
The DATASUM value is expressed as a character string (i.es, not practical for application in situations where a FITIS i
enclosed in single quote characters) because supportddulth being created dynamically onto a streaming medium: at the po
range of 32-bit unsigned integer keyword values is probtamain time when the header is being written the value of DATASUM
in some software systems. This string may be padded with nasnot yet known, and when DATASUM is known the header can-
significant leading or trailing blank characters or leadiegos. not be modified anymore.

24

14.5.2. Recommended CHECKSUM Keyword Implementation
The recommendeeHECKSUM keyword algorithm described here

generates a 16-character ASCII string that forces the B2'di 2

complement checksum accumulated over the efifeS HDU

to equal negative 0 (all 32 bits equal to 1). In addition, ghigg

will only contain alphanumeric characters within the ras@e9,
A-Z, and a—z to promote human readability and transcription
This CHECKSUM keyword value must be expressed in fixed for-
mat, with the starting single quote character in column 1d an
the ending single quote character in column 28 offhESkey-
word record, because the relative placement of the valuegstr
within the keyword recordféects the computed HDU checksum.
The steps in the algorithm are as follows:

1. Write the CHECKSUM keyword into the HDU header
with an initial value consisting of 16 ASCIl zeros
(’0000000000000000 ') where the first single quote charac-
teris in column 11 of thé&/TSkeyword record. This specific
initialization string is required by the encoding algonitide-
scribed in§A.3. The final comment field of the keyword, if 3.
any, must also be written at this time. It is recommended that
the current date and time be recorded in the comment field

FITS records in the HDU after first initializing tR@ECKSUM
keyword with a fixed-format string consisting of 16 ASCII
zeros (0000000000000000°).

. Interpret this complemented 32-bit value as a sequence of

4 unsigned 8-bit integers, A, B, C and D, where A is the
most significant byte and D is the least significant. Generate
asequence of 4integers, A1, A2, A3, A4, that are all equal to
A divided by 4 (truncated to an integer if necessary). If A is
not evenly divisible by 4, add the remainder to Al. The key
property to note here is that the sum of the 4 new integers is
equal to the original byte value (e.g.,/AA1 + A2 + A3 +
A4). Perform a similar operation on B, C, and D, resulting in
a total of 16 integer values, 4 from each of the original bytes
which should be rearranged in the following order:

Al B1 C1 D1 A2 B2 C2 D2 A3 B3 C3 D3 A4 B4 C4 D4

Each of these integers represents one of the 16 characters
in the final CHECKSUM keyword value. Note that if this byte
stream is interpreted as 4 32-bit integers, the sum of tlee int
gers is equal to the original complemented checksum value.
Add 48 (hex 30), which is the value of an ASCII zero char-
acter, to each of the 16 integers generated in the previous
step. This places the values in the range of ASCII alphanu-

to document when the checksum was computed. meric characters '0’ (ASCII zero) to 'r’. Thisftset is éfec-

2. Accumulate the 32-bit 1's complement checksum over the tively subtracted back out of the checksum when the initial
FITS logical records that make up the HDU header in the CHECKSUM keyword value string of 16 ASCII Os is replaced
same manner as was done for the data records by interpret-with the final encoded checksum value.
ing each 2880-byte logical record as 720 32-bit unsigned i To improve human readability and transcription of thingtr
tegers. eliminate any non-alphanumeric characters by considering

3. Calculate the checksum for the entire HDU by adding (us- the bytes a pair at a time (e.g., AAA2, A3 + A4, B1 +
ing 1's complement arithmetic) the checksum accumulated B2, etc.) and repeatedly increment the first byte in the pair
over the header records to the checksum accumulated overby 1 and decrement the 2nd byte by 1 as necessary until they
the data records (i.e., the previously compmaTASUM key- both correspond to the ASCII value of the allowed alphanu-
word value). meric characters 0-9, A—Z, and a—z shown in Figure 1. Note

4. Compute the bit-wise complement of the 32-bit total HDU that this operation conserves the value of the sum of the 4
checksum value by replacing all 0 bits with 1 and all 1 bits equivalent 32-bit integers, which is required for use irs thi
with O. checksum application.

5. Encode the complement of the HDU checksum into a 16- [postscript figure goes herel!]
character ASCII string using the algorithm described is. Cyclically shift all 16 characters in the string one plézéhe
§A.3. right, rotating the last character4) to the beginning of the

6. Replace the initiaCHECKSUM keyword value with this 16- string. This rotation compensates for the fact that the fixed
character encoded string. The checksum for the entire HDU formatFITScharacter string values are not aligned on 4-byte
will now be equal to negative 0. word boundaries in th&ITSfile. (The first character of the

string starts in column 12 of the header card image, rather
than column 13).

. Write this string of 16 characters to the value of the
CHECKSUM keyword, replacing the initial string of 16 ASCII
zeros.

14.5.3. Recommended ASCII Encoding Algorithm 6

The algorithm described here is used to generate an AS@igjstr
which, when substituted for the value of {ti#ECKSUM keyword,
will force the checksum for the entire HDU to equal negativi O
is based on a fundamental property of 1's complement ariltiltrmet
that the sum of an integer and the negation of that integertfie
bitwise complement formed by replacing all 0 bits with 1s an
all 1 bits with 0s) will equal negative 0 (all bits set to 1).i¥h
principle is applied here by constructing a 16-charactengst
which, when interpreted as a byte stream of 4 32-bit inte¢pas
a sum that is equal to the complement of the sum accumulated

over the rest of the HDU. This algorithm also ensures thaléhe 14.5.4. Encoding Example

bytes that make up the 4 integers all have values that camelsp

to ASCII alpha-numeric characters in the range 0-9, A-Z, ads example illustrates the encoding algorithm giver§An3.
a—z. Consider aFITS HDU whose 1's complement checksum is

868229149, which is equivalent to hé8C0201D. This num-
1. Begin with the 1's complement (replace 0s with 1s and b&r was obtained by accumulating the 32-bit checksum over
with 0s) of the 32-bit checksum accumulated over all ththe header and data records using 1's complement arith-

To invert the ASCII encoding, cyclically shift the 16 charac
ers in the encoded string one place to the left, subtrachéxe
0 ofset from each character, and calculate the checksum by in-
erpreting the string as 4 32-bit unsigned integers. Thislm
used, for instance, to read the valueCHECKSUN into the soft-
ware when verifying or updating a file.

25

metic after first initializing theCHECKSUM keyword value to C’ represent the file’s checksum (that is, the complement of
’0000000000000000°. The complement of the accumulatedhe CHECKSUM keyword) before and after the modification and
checksum is 3426738146, which is equivalent to ®@&3FDFE2. m and nm' are the corresponding checksums for the modified
The steps needed to encode this hex value into ASCII are sha®@lif S records or keywords only. Since tliHECKSUM keyword

schematically below: contains the complement of the checksum, the correspolyding
complemented form of the recipe is more directly usefd: =

Byte Preserve byte alignment(C +"m+ nv), where ~ (tilde) denotes the (1's) complement op-
AB COD Al Bl C1 D1 A2 B2 C2 D2 A3 B3 O3 DirdifoR4(Sktef. 5-7.) Note that the tilde on the right hsidd

of ﬁge guatign cannot be distributed over the contents ®f th
CC 3F DF E2 -> 33 OF 3738 33 OF 37 38 33 OF 37 38pa nﬂ?eégsé%ue to the dual nature of zero in 1's complement

+ remainder 0 3 3 2 . -
arithmetic (ref. 7).
= hex 33 12 3A 3A 33 OF 37 38 33 OF 37 38 33 OF 37 38
+ 0 offset 30 30 30 30 30 30 30 30 30 30

30 3014.%@6.3%I§grr%a®te Checksum Algorithms

Xslcl‘;’l‘ 63 42 6A A 63 3F 67 GE 63 3F 67 68rp@je réaé\‘?griety of checksum schemes (for examples, see re
1 < 9 ¢ 9 1 8%) 4thér than the 1's complement algorithm describéhian
chardiQRasal, although other checksums are significantly mistie d
g ultfoften computationally impractical or impossible)eimbed

Hn FETShegdeys in the same fashion.

h Checksunisgyclic redundancy checKsr CRCs see ref. 3

Hor example),landnessage digestsich as MD5 (ref. 12) are alll

fexafples ©f Bash functions. Many possible images will hash t

%he Same éheltksum—how many depends on the number of bits

I ttfe iha8e VYersus the number of bits in the sum. The utility
it suring hjcsoncsahesy” Ceotae charac By S REpErIors oot orgeres) o orer

In this example byte B1 (originally ASCH) is shifted higher likely errors.

(to ASCII H) to balance byte B2 (originally ASCI?) being For instance, a 32-bit checksum or CRC each detects the

shifted lower (to ASCII9). Similarly, bytes B3 and B4 are same fraction of all bit errors (ref. 9), missing only2# of all

shifted by opposing amounts. This is possible because the t@frors (about 1 out of 4.3 billion) in the limit of long trangn

sequences of ASCII punctuation characters that can occurSians (the extra zero of 1's complement arithmetic chanigies t

encoded checksums are both preceded and followed by longgienly a small amount).

sequences of ASCII alphanumeric characters. This operiio = CRCs and message digests are basically checksums that use

purely for cosmetic reasons to improve readability of thalfinhigher order polynomials, thus removing the arithmetic syen

(g}
—
-~

Eliminate punctuation

initial values c ? C

= Al V

T ommEmonNn®
[= =g = = = = =
MmOoNwW>o- N

C
C
C
C
C
C
C

NnnNonNnnnn
[(= (== (e Jy{e (e (o]
non0onnnn
Qo uuuQ

final values 9

string. try on which this proposal relies. CRCs are tuned to be deasit
This is how thes&€HECKSUM andDATASUM keywords would to the bursty nature of communication line noise and will de-
appear in &/TSheader: tect all bitstream errors shorter than the size of the CRGeNo
that the 1's complement sum is not insensitive to these bit er
L 2 3 4 > ror pafterns, it i%iL{JSt nagspecially sensitive to them. The extra
123456789012345678901234567890123456789012345678901234547 &Mﬁ;ﬁﬁés € to burst errors must come at the expense

DATASUM = ’2503531142° / Data checksum create fﬂ&as_%@@%%%sﬂdvgy to other bit pattern errors (simmetbtal

CHECKSUM= ’hcHjjc9ghcEghc9g’ / HDU checksum created é@@ﬁl%%gﬂ@l;%g_@{?ﬂed remains the, same) and does oesne
sarily represent the best model faiT Sbit errors. CRCs are also

_ designed to be implemented in hardware using XOR gates and
14.5.5. Incremental Updating of the Checksum shift registers that accumulate the function “on-the-figti@mit

The symmetry of 1's complement arithmetic also means that l]ae CRCaiter trar)smitting't.he data. This is not well matched to
ter modifying aFITS HDU, the checksum may be increment e FITS convention of writing the metadata as a header which

tally updated using simple arithmetic without accumulgtine precedes the data records.

checksum for portions of the file that have not changed. The

new checksum is equal to the old total checksum plus the eheglf 5 7. Digital Signatures

sum accumulated over the modified records, minus the ofigina

checksum for the modified records. The particular intent of a message digest, on the other hand,
An incremental update provides the mechanism for end-tig-protect against human tampering by relying on functidias t

end checksum verification through any number of intermedigare computationally infeasible to spoof. A message didesils

processing steps. Bsalculatingather tharaccumulatinghe in- also be much longer than a simple checksum so that any given

termediate checksums, the original checksum test is peipdg message may be assumed to result in a unique value.

through to the final data file. On the other hand, if a new check- A digital signaturenay be formed by reverse encrypting a

sum is accumulated with each change to the file, no informatimessage digest using the private key of a public key enamypti

is preserved about the file’s original state. pair (ref. 13). A later decryption using the corresponding{p
The recipe for updating théHECKSUM keyword following licly available key guarantees that the signature coulg bave

some change to the file i€ = C - m+ m', whereC and been generated by the holder of the private key, while the mes

26

sage digest uniquely identifies the document (or image)that to ’0000000000000000° and initializesum32 = @, then step

signed. Support for digital signatures could be added t&-1f&
standard by defining &ITS extension format to contain the dig-
ital sighature certificates, or perhaps by simply embedtiag
in an appendeé#/TStable extension.

There is a trade® between the error detection capability
of these algorithms and their speed. The overhead of a Higita
signature (or a software emulated CRC) is larger than a sim- ¢
ple checksum, but may be essential for certain purposeinffor /*
stance, archival storage) in the future. The checksum dkfigie
this proposal provides a way to verifyi TS data against likely */
random errors, while on the other hand a full digital signatu
may be required to protect the same data against systematic e
rors, especially human tampering.

14.5.8. Fletcher's Checksum

One other checksum algorithm shows some promise of being
embeddable in an ASCHITSheader. This i$letcher’s check-

sum (ref. 9-11) which is a variant of the 1's complement check-
sum thatis tuned to trap bit error patterns similar to thoesgted

by a CRC. Itis somewhat slower than the 1's complement check-
sum and more finicky to implement. The checksum is divided
into two (16 bit) pieces—a straight 1's complement sum and a
higher order sum of the running sums. The procedure for updat
ing the two checksum fields (zeroing the checksum of the file)
involves solving a pair of simultaneous equations. ASCtceth

ing the checksum would require an iterative solution spoeex

the four separate ASCII encoded integer words (and inctudin
the constraint of the hex 3(iget). Incremental updating of the
checksum would incur a similar penalty for each word of the
FITSfile that was modified.

through all theFITSlogical records in the FITS HDU.

void checksum (

unsigned char *buf, /* Input array of bytes to be checksummed */

/* (interpret as 4-byte unsigned ints) */
int length, /* Length of buf array, in bytes */
/* (must be multiple of 4) %/
unsigned int *sum32) /* 32-bit checksum */

Increment the input value of sum32 with the 1’s complement sum
accumulated over the input buf array.

unsigned int hi, lo, hicarry, locarry, ij;

/* Accumulate the sum of the high-order 16 bits and the */

/* low-order 16 bits of each 32-bit word, separately. */

/* The first byte in each pair is the most significant. */

/* This algorithm works on both big and little endian machines. *
hi = (*sum32 >> 16);

lo = *sum32 & OxFFFF;

for (i=0; i < length; i+=4) {
hi += ((buf[i] << 8) + buf[i+l]);
lo += ((buf[i+2] << 8) + buf[i+3]);
}

/* fold carry bits from each 16 bit sum into the other sum */
hicarry = hi >> 16;
locarry = lo >> 16;
while (hicarry || locarry) {
hi = (hi & OxFFFF) + locarry;
lo = (lo & OxFFFF) + hicarry;
hicarry = hi >> 16;
locarry = lo >> 16;

}

/* concatenate the full 32-bit value from the 2 halves */
*sum32 = (hi << 16) + lo;

The added complexity and overhead of handling Fletchef4-5-11. Example C Code for ASCII Encoding

checksum (see ref. 10-11) are unwarrantedsdiS, at least as
the default algorithm, but this checksum is an interestiogsp
bility for binary applications. Other checksums are alstas
in the binary case, especially if the checksum fields can be
cated at the end of the file, which simplifies the arithmefig si
nificantly.

14.5.9. Error Correcting Algorithms

Error correcting (see ref. 2), as opposed to errdetecting
algorithms are beyond the scope of this proposal, as are
non-systematic codes for either error detection or cdoect
Systematic codes are those, such as the 1's complement check- ¢
sum, that require no change to the data when applied to a mes-
sage. Simply appending a checksum to a file is systematis, as i
appending parity or other check bits to each byte or record of
the data without otherwise modifying the data bits. Codes th
are not systematic involve recoding the individual data it
some fashion (see the discussiorpodduct codes in ref. 4, for
example).

14.5.10. Example C Code for Accumulating the Checksum

The 1's complement checksum is simple and fast to com-
pute. This routine assumes that the input records are a-multi
ple of 4 bytes long (as is the case fBITS logical records

but it is not dificult to allow for odd length records if neces-
sary. To use this routine, first initialize ti@ECKSUM keyword

int offset = 0x30;
unsigned long mask[4] = { 0xff000000, 0xff0000, Oxff00, Oxff };

0x5b, 0x5c, 0x5d, Ox5e, 0x5f, 0x60 };

/* ASCII O (zero) */

void char_encode (

unsigned int value, /* 1’s complement of the checksum value */
/* to be encoded */

char *ascii) /* Output 1l6-character encoded string */

int byte, quotient, remainder, ch[4], check, i, j, k;

char asc[32];

for (i=0; i < 4; i++) {
/* each byte becomes four */
byte = (value & mask[i]) >> ((3 - i) * 8);
quotient = byte / 4 + offset;
remainder = byte % 4;
for (3=0; j < 4; j++)
ch[j] = quotient;

ch[0] += remainder;

for (check=1; check;) /* avoid ASCII punctuation */
for (check=0, k=0; k < 13; k++)
for (3=0; j < 4; j+=2)
if (ch[j]l==exclude[k] || ch[j+1]==exclude[k]) {
chj]++;
ch[j+1]--;
check++;

27

This routine encodes the complement of the 32-bit HDU check-
sum value into a 16-character string. The byte alignmenhef t
tring is permuted one place to the right falTSto left justify
e string value starting in column 12.

unsigned int exclude[13] = { 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f, 0x40,

for (j=0; j < 4; j++) /* assign the bytes */
asc[4*j+i] = ch[j];
}

for (i=0; i < 16; i++) /* permute the bytes for FITS */
ascii[i] = asc[(i+15)%16];

ascii[16] = 0; /* terminate the string */

14.5.12. Acknowledgments

The authors gratefully acknowledge the many helpful commen
from Barry Schlesinger.

14.5.13. References

1. Seaman, R.L. 1994 FITS Checksum Verification in the
NOAO Archive”, presented at the conferenéstronomical
Data Analysis Software and Systems, i@ appear in the
A.S.P. Conf. Ser.

2. Peterson, W.W. and Weldon Jr., E.J. 19¥®&pr-Correcting
Codes Second Edition (MIT Press).

3. McNamara, J.E. 1982,Technical Aspects of Data
CommunicationSecond Edition (Digital Press).

4. Plummer, W.W. 1978, “TCP Checksum Function Design”,
ACM Computer Communication Revied®, no. 2, 95-101,
this is an appendix tinternet RFC 1071

5. Braden, R. T., Borman, D.A., and Partridge, C. 1988
(September), “Computing the Internet ChecksurAGCM
Computer Communication Revied®, no. 2, 86-94, this is
Internet RFC 1071

6. Mallory, T. and Kullberg, A. 1990 (January), “Incrementa
Updating of the Internet Checksunihternet RFC 1141

7. Rijsinghani, A. (ed.) 1994 (May), “Computation of the
Internet Checksum via Incremental Updaté&iternet RFC
1624

8. Zweig, J. and Partridge, C. 1990 (March), “TCP Alternate
Checksum Options’internet RFC 1146

9. Fletcher, J.G. 1982, “An Arithmetic Checksum for Serial
Transmission”, IEEE Transactions on Communications
COM-30, no. 1, 247-252.

10. Nakassis, A. 1988, “Fletcher’'s Error Detection Alglomit
How to implement it &iciently and how to avoid the most
common pitfalls” ACM Computer Communication Review
18, no. 5, 63-88.

11. Sklower, K. 1989, “Improving the fEciency of the OSI
Checksum Calculation”ACM Computer Communication
Review 19, no. 5, 32-43.

12. Rivest, R. 1992 (April), “The MD5 Message Digest
Algorithm”, Internet RFC 132%ee alsdRFC 131&ndRFC
1320

13. Zimmermann, P. 1995,The ficial PGP User's
Guide (MIT Press), PGP is available fronhttp;/net-
dist.mit.edupgp.html or ftp://ftp.csn.netmpj/README,
which also provide United States export and licensing
requirements.

InternetRequests for Comments, or RFCs are the written
design documents for Internet protocols. They are availabl
many locations on the Internet, includitidgtp;/www.cis.ohio-
state.edthtbiryrfc/rfc-index.html

28

15. Tiled Image Compression Convention
15.1. Preface

15.2. General Description

This document describes a convention for compressing n-

dimensional images and storing the resulting byte stream in
variable-length column in a FITS binary table. The FITS file
structure outlined here is independent of the specific data c
pression algorithm that is used. The implementation defail

4 widely used compression algorithms are described hete, bu

any other compression technique could also be supportdddy t
convention.

The general principle used in this convention is to first di-
vide the n-dimensional image into a rectangular grid of subi

ages or ‘tiles’. Each tile is then compressed as a block af,dat—

and the resulting compressed byte stream is stored in a raw of
variable length column in a FITS binary table. By dividingth
image into tiles it is generally possible to extract and unco

separately and stored in a row of a variable-length vectier co
umn in the binary table. The size of each image dimension
(given byZNAXISn) is not required to be an integer multiple
of ZTILEn, and if it is not, then the last tile along that dimen
sion of the image will contain fewer image pixels than the
other tiles. If theZTILEn keywords are not present then the
default 'row by row’ tiling will be assumed such thaTILE1

= ZNAXIS1, and the value of all the oth@TILEn keywords
equals 1.

The compressed image tiles are stored in the binary table in
the same order that the first pixel in each tile appears in the
FITS image; the tile containing the first pixel in the image
appearsin the first row of the table, and the tile contairtileg t
last pixel in the image appears in the last row of the binary
table.

ZNAMEn and ZVALn (optional keywords) These pairs of op-
tional array keywords (where n is an integer index number
starting with 1) supply the name and value, respectively, of
any algorithm-specific parameters that are needed to com-

press subsections of the image without having to uncompresspress or uncompress the image. The valu€wLn may

the whole image. The default tiling pattern treats each rba o
2-dimensional image (or higher dimensional cube) as astileh
that each tile containgAXIS1 pixels. This default many not be
optimal for some applications or compression algorithrosrsy
other rectangular tiling pattern may be defined usingZtfieLEn
keywords that are described below. In the case of relatsraizll
images, it may be dhicient to compress the entire image as a
single tile, resulting in an output binary table with 1 row.the

case of 3-dimensional data cubes, it may be advantagegesatot —

each plane of the cube as a separate tile if application acdtw
typically needs to access the cube on a plane by plane basis.

15.3. Keywords

The following keywords are defined by this convention for use

in the header of the FITS binary table extension to deschibe t
structure of the compressed image.

— ZIMAGE (required keyword) This keyword must have the log-
ical value T. It indicates that the FITS binary table extensi

contains a compressed image and that logically this exten-

sion should be interpreted as an image and not as a table.

— ZCMPTYPE (required keyword) The value field of this key-
word shall contain a character string giving the name of
the algorithm that must be used to decompress the im-
age. Currently, values &fZIP_1, GZIP_2, RICE_1, PLIO_1,
andHCOMPRESS_1 are reserved, and the corresponding algo-
rithms are described in a later section of this document. The
valueRICE_ONE is also reserved as an alias RarCE_1. -

— ZBITPIX (required keyword) The value field of this keyword
shall contain an integer that gives the value of BI&PIX
keyword in the uncompressed FITS image.

— ZNAXIS (required keyword) The value field of this keyword
shall contain an integer that gives the value of E&XIS —
keyword in the uncompressed FITS image.

— ZNAXISn (required keywords) The value field of these key-
words shall contain a positive integer that gives the vafue o
theNAXISn keywords in the uncompressed FITS image.

— ZTILEn (optional keywords) The value of these indexed key-
words (wheren ranges from 1 t&NAXIS) shall containa -
positive integer representing the number of pixels alorig ax
n of the compression tiles. Each tile of pixels is compressed

have any valid FITS datatype. The order of the compression
parameters may be significant, and may be defined as part of
the description of the specific decompression algorithm.

— ZMASKCMP (optional keyword) Used to record the name of

the image compression algorithm that was used to compress
the optional null pixel data mask. See the“Preserving unde-
fined pixels with lossy compression” section for more de-
tails.

The following 8 optional keywords are defined to store a
verbatim copy of the the value and comment fields of the
corresponding keywords in the original uncompressed FITS
image. These keywords can be used to reconstruct an identi-
cal copy of the original FITS file when the image is uncom-
pressed.

— ZSIMPLE - preserves the origin&lIMPLE keyword
ZTENSION - preserves the origin&TENSION keyword
ZEXTEND - preserves the origin&XTEND keyword
ZBLOCKED - preserves the origin&LOCKED keyword
ZPCOUNT - preserves the origin®COUNT keyword
ZGCOUNT - preserves the origin@COUNT keyword

— ZHECKSUM - preserves the origin@HECKSUM keyword
ZDATASUM - preserves the origin®ATASUM keyword

TheZSIMPLE, ZEXTEND, andZBLOCKED keywords may only

be used if the original uncompressed image was contained in
the primary array of the FITS file. THETENSION, ZPCOUNT,
andZGCOUNT keywords may only be used if the original un-
compressed image was contained in in IMAGE extension.
ZQUANTIZ (optional keyword) This keyword records the
name of the algorithm that was used to quantize floating-
point image pixels into integer values which are then passed
to the compression algorithm, as discussed further inaecti

4 of this document.

ZDITHERO (optional keyword) The value field of this key-
word shall contain an integer that gives the seed value for
the random dithering pattern that was used when quantizing
the floating-point pixel values. The value may range from 1
to 10000, inclusive. See section 4 for further discussion of
this keyword.

Other Keywords The FITS header of the compressed im-
age may contain other optional keywords. If a FITS primary
array or IMAGE extension is compressed using the conven-

29

tion described here, it is recommended that all the keywords
in the header of the original image, except for the manda-
tory keywords mentioned above, be copied verbatim and in
the same order into the header of the binary table extension
that contains the compressed image. All these keywords will
have the same meaning and interpretation as they did in the
original image, even in cases where the keyword is not nor-
mally expected to occur in the header of a binary table ex-

tension (e.g., thBSCALE andBZERO keywords, or the World
Coordinate System keywords suchcA4¥PEn, CRPIXnand
CRVALn).

15.4. Columns

The following columns in the FITS binary table are defined by
this convention. The order of the columns in the table is gt s
nificant. The column names (given by th&YPEn keyword) are
shown here in upper case letters, but the case is not sigttifica

Note regarding the variable-length columns: The
COMPRESSED DATA, GZIP_COMPRESSED DATA, and
UNCOMPRESSED DATA columns described below will nor-

mally use the '1P’ variable-length array FITS column format

if the size of the heap in the compressed FITS file is less than
about 2.1 GB in size. If the the heap is larger than 2.1 GB, then

the '1Q’ format (which uses 64-bit pointers) must be used.

— COMPRESSED_DATA (required column)

Datatype BITPIX TFORMn

byte 8 ’'1PB’or’'1QB’

short int 16 ’1PI'or’1Qr

long int 32 '1PJ or’1QJ

float -32 '1PE’or’'1QF’

double -64 '1PD’or’'1QD’
A compressed image may contain either
the UNCOMPRESSED DATA column or the

GZIP_COMPRESSED DATA column, but not both.

ZSCALE andZZERO (optional floating-point columns)

When using the quantization method to compress floating-
point images that is described in Section 4, these 2 columns
store the linear scale factor and the zero poifget, respec-
tively, that are used to scale the floating-point pixel value
into integers via,

l; = ROUND((F; - ZZERO)/ZSCALE) @)

wherel; andF; are the integer and floating-point values, re-
spectively and the ROUND function rounds the result to the
nearest integer value. The array of integer tile pixel value
is then compressed using the algorithm that is specified by
the ZCMPTYPE keyword and the resulting compressed byte
stream is stored in theOMPRESSED DATA column.

The ZSCALE and ZZERO columns should not be confused

Each row of this variable-length column contains the byte With the reserve@SCALE andBZERO keywords which may
stream that is generated as a result of compressing the corre be present in integer FITS images (which have BITRIX
sponding image tile. The datatype of the column (as given 8, 16, or 32). Any such integer images should normally be

by the TFORMn keyword) will generally be eithef 1PB’,
"1PI’, or ’1PJ’ (or the equivalent 1Q’ format), depend-

compressed without any further scaling, andBREALE and
BZERO keywords should be copied verbatim into the header

ing on whether the compression algorithm generates an out- Of the binary table containing the compressed image.

put stream of 8-bit bytes, 16-bit integers, or 32-bit intsge —

respectively.
— GZIP_COMPRESSED_DATA (optional column)

When using the quantization method to compress floating-
point images that is described in Section 4, it sometimes
may not be possible to quantize some of the tiles (e.g., if

the range of pixels values is too large or if most of the pix-

ZBLANK (optional column or keyword)

When using the quantization method to compress floating-
point images that is described in Section 4, this column is
used to store the integer value that represents undefined pix
els (if any) in the scaled integer pixel values. These pixels
have an IEEE NaN value (Not a Number) in the uncom-

pressed floating-point image. The recommended value for

els have the same value and hence the calculated RMS noiseZBLANK is -2147483648 (the largest negative 32-bit integer).
level in the tile is close to zero). There also may be other If the same null value is used in every tile of the image, then
rare cases where the nominal compression algorithm can notZBLANK may be given as a header keyword instead of a ta-
be applied to certain tiles. In these cases, one may use anble column. If there are no undefined pixels in the image
alternate technique in which the raw pixel values are loss- thenZBLANK is not required. If the uncompressed image has
lessly compressed with the GZIP algorithm and the resulting an integer datatypeBITPIX > 0) then the reserveBLANK

byte stream is stored in th&ZIP_COMPRESSED DATA col-
umn (with a’ 1PB’ or ’ 1QB’ variable-length array column
format). The correspondingOMPRESSED DATA column for
these tiles must contain a null pointer.

— UNCOMPRESSED_DATA (optional column)

keyword, which already serves this purpose, should be used
instead oZBLANK.

— NULL_PIXEL MASK (optional column)
When using some image compression techniques that do not

exactly preserve integer pixel values, it it may be neces-

Use of this column is no longer recommended, but it may ex- Sary to store a compressed image mask along with the com-
ist in older compressed image files that were created before Pressed image itself, to record the location of the undefined

support for theGZIP_COMPRESSED DATA column (describe

pixels in the image. ThiSULL_PIXEL _MASK column may be

above) was added to this convention in May 2011. This vari- used for this purpose. See the “Preserving undefined pixels
able length column contains the uncompressed pixels for any With lossy compression” section for more details.

tiles that cannot be compressed with the normal method. The Other Columns Any number of other columns may be
datatype of this column should correspond to the datatype of Presentin the table to supply other parameters that redate t

the original image as shown in the following table:

30

each image tile.

15.5. Quantization of Floating-Point Data This technique, which is called ‘subtractive dithering’ in

the signal processing literature (e.g., "Quantizationdebdiby

While f'oat".‘g'F’Oi.”t fqrmat !mages may be losslessly COMyjidrow and Kollar), has theftect of dithering the zero-point of
pressed (using gzip, since Rice and H-compress only cosipr guantization grid on a pixel by pixel basis without addin

integer arrays), these images often do not compress vety y actual noise to the image. The nfeet of this is that the

_betcr?use th,? p|xelf\{{<srlllue§ arle tolo ?'33{5 tr;e Iesst signifiadt by oo (and median) pixel value in faint regions of the imageemo
In e'brlnan |s§a N bit € pﬂxe value gac |\{e y Cﬁ.n alnhllnﬁom- closely approximate the value in the original unquantizedge
pressibie random Dit patterns. in order 1o achieve NIGNBT-COy,, jf 5 the pixels are scaled without dithering. This sagnif-

f’“?ss"t’r?' onefnlge?s to {_emove tSOT%Of this n0|se|:, but t\j,\ftlth ntly increase the precision when measuring the net flo fr
qsmgf € uze u mtch]rma lon .CO? en y r;ﬁ c?lmr?on y U.Sh‘: € faint sources in the compressed image.
nique tor reducing th€ noise IS to scalé he floating-poiies The key requirement when using this subtractive dithering

into quantized integers using Eq. 1, and usingZBEALE and 4o pnique is that the exact same random number sequence must
ZZERO colymns to record the 2 scaling dheients that are .USEd. e used when quantizing the pixel values to integers, anchwhe
for each tile. Note that the absence of these 2 columns iea t&J ’

d float int . ndication that tremi estoring them to floating point values. While most computer
compressed floating-point image is an indication that th@gen |5nq.ages supply a function for generating random numbers,
was not scaled and was instead losslessly compressed.

Th i chall X tizing the i i thi these functions are not guaranteed to generate the samensequ
o ch € main cha enge_lrtl quar|1.|2|r}g te 'Irpf"t‘ge tm IIS Way 1§t numbers every time. Accordingly, we define a specific algo-
In choosing an appropriate scaling factor. 1Mt 1S 100 13M98e i, here for generating a repeatable sequence of pseundo ra
undersamples the pixel values resulting in a loss of infdiona

in the image. If it is too small, however, it preserves too h1ucOlom numbers in Appendix A.
of the noise (or even amplifies the noise) in the pixel values,
resulting in poor compression. 15.5.1. Dithering Algorithms
An effective scaling algorithm for preserving a specifie . . oo
amount of noise in each pixel value is described by White a%}?hen quantizing f_Ioatlng point images, one may Ch(_)ose from
Greenfield (in the Proceedings of the 1998 ADASS VIII confel'® 3 currently defined dithering algorlthms as spemﬁedl’@yt
ence) and by Pence, Seaman, and White, PASP 121, 414 (20‘(5@ e of theZQUANTIZ keyword, as described in the following
With this method, the ZSCALE value (which is numerically?cctions:
equal to the spacing between adjacent quantization leigaig)-
culated to be some fraction, Q, of the RMS noise as measured 8)5.2. ZQUANTIZ= ’NO_DITHER’
background regions of the image. It can be shown that the num-) .) L
ber of binary bits of noise that are preserved in each pixeleva ! Nis is the simplest option in which no dithering is perforne
is given bylog,(Q)+1.792. For example, using ©8 (so that the The_z floating-point pixels are s.|mply quantized using E_q. HisT
quantized levels have a spacing g8th of the background RMS ©OPtion should be assumed if tHQUANTIZ keyword is not
noise value) produces a quantized image that preserveszaﬁoupresent in the header of the compressed floating-point image
bits of noise in each pixel. Specifying the quantizatioreleel-
ative to the amount of noise in the image in this way produces 5 3. 7QUANTIZ= ’SUBTRACTIVE.DITHER 1’
comparable quality images regardless of the noise leved.dp i
rectly related to the compressed file size: decreasing Q hg-a fThe steps in this dithering option are as follows:
tor of 2 will decrease the file size by about 1/pixel. In order
to achieve the greatest amount of compression, one shoeld
the smallest value of Q that still preserves the requiredwuarno
of photometric and astrometric precision in the image.
One potential problem when applying this scaling method to
astronomical images, in particular, is that it can lead tpstesn-
atic bias in the measured intensities in faint parts of thegey
such as in the background sky. As the image is quantized morée
coarsely, the measured intensity of the background regifithe
sky will tend to be biased towards the nearest quantize.|®red
very dfective technique for minimizing this potential bias is to
“dither” the quantized pixel values by introducing randoaise
during the quantization process. So instead of simplysgav-
ery pixel value in the same way using Eqg. 1, one randomizes the
quantized levels by using this slightly modified equation:

l}s Generate a sequence of 10000 single-precision floating-p
random numbers, RN, with a value between 0.0 and 1.0,
using the algorithm given in Appendix A. Since it could
be computationally expensive to generate a unique random
number for every pixel of large images, we repeatedly recy-
cle through this ‘look up table’ of random numbers.
Choose an integer in the range 1 to 10000 to serve as an
initial seed value for creating a unique sequence of random
numbers from the array that was calculated in the previous
step. The purpose of this is to reduce the chances of apply-
ing the same dithering pattern to 2 images that are subse-
quently subtracted from each other (or co-added), because
the benefits of randomized dithering are lost if all the pix-
els are dithered in phase with each other. The exact method
for computing this seed integer is not important as long as
the value is chosen more or less randomly. For example, one
li = ROUND(((Fi - ZZERQO)/ZSCALE) + R - 0.5) (8) might calculate the seed value based on the system clock
time when the image is compressed, or based on the check-
sum of all the pixel values in the first image tile that is com-
pressed. However, beware of using the checksum method for
choosing the seed value in cases where the firsttitevof
all the images in a dataset are identical, as can happen if all
the images have a border of zero or null valued pixels around
Fi = ((li = R + 0.5) * ZSCALE) + ZZERO (9) the actual image.

whereR; is a random number between 0.0 and 1.0, and the 0.5
term is subtracted so that the mean quantity is equal to 0n The
restoring the floating-point value, the same random nunber i

used with the inverse formula

31

3. Write the integer seed value that was selected in thequisvi original value of 0.0. This dithering option is useful if the
step as the value of tH®bITHERO® keyword in the header of zero-valued pixels have special significance to the datlysisa
the compressed image. This value is required to recompstdtware, so that the value of these pixels must not be dither
the same dithering pattern when uncompressing the image.

4. Before quantizing each tile of the floating point imagé; ca
culate an initial value for 2féiset parameters, 10 and 11, with1-6- Preserving undefined pixels with lossy compression

the following formulae: The null pixels in integer images are flagged by a reseBuask
value and will be preserved if a lossless compression dlguri
is used. If the image is compressed with a lossy algorithiw; ho
10 = modulo(TILE-NUMBER -1 + ZDITHERO, 1000Q)0) gyer (e.g., H-Compress with a scale factor greater tharmaj, t
11 =INT(RN(I10)*500})1) some other technigue must be used to identify the null pixels
))) the image.
where TILENUMBER is the row number in the binary ta- ~ The recommended method of recording the null pixels when
ble that is used to store the compressed bytes for that tilelossy compression algorithm is used is to create an integar
ZDITHERO is that value of that keyword, and RN(I0) is themask with the same dimensions as the image tile. Set the null
value of the (10)th random number in the sequence that Wgikels to 1 and all the other pixels to 0, then compress thé&kmas
computed in the first step. Note that 10 has a value in thgray using a lossless algorithm such as PLIO or GZIP. Store
range 0to 9999 and I1 has a value in the range 0 to 499. Tkg compressed byte stream in a variable-length array golum
method for computing 10 and 11 was chosen so thatfi@di called 'NULL_PIXEL_MASK’ in the row corresponding to that
ent sequence of random number is used to compress sucg@gge tile. The ZMASKCMP keyword should be used to record
sive tiles in the image, and so that the sequence of 11 valugg name of the algorithm used to compress the data mask (e.g.
has a length of order 100 million elements before repeatingiCE 1). The data mask array pixels will be assumed to have the
5. Now quantize each floating-point pixel in the tile usinghortest integer datatype that is supported by the comipress
Eq. 2 and using random number RN(I1) for the first plxeblgorithm (i.e., usually 8-bit bytes).
Increment the value of I1 for each subsequent pixel in the” \when uncompressing the image tile, the software must
tile. If the value of |1 reaches the upper limit of 10000, theBheck if the corresponding compressed data mask exists with
increment the value of 10 and recompute |1 from Eq. S. If thg |ength greater than 0, and if so, then uncompress the mask an
value of 10 also reaches the upper limit of 10000, then resgit the corresponding undefined pixels in the image arrayeto t

0to 0. o __appropriate value (as given by the BLANK keyword).
If the floating-point pixel has an IEEE NaN value, then it is

not quantized or dithered and instead it is set to the rederve _ _
integer value that is specified by tEBLANK keyword. For 15.7. Currently Implemented Compression Algorithms

consistency, the value of 11 should also be mcremented.i.rms section describes the 4 compression algorithms teat.ar

this case even though it is not used. : . . o
6. Compress the arra)g of quantized integers using the kssslreently supported in the CFITSIO implementation of thisdile

v : o I Image compression convention (available from the HEASARC
g%zrggrg;gﬁt')s specified by tHeCHPTYPE keyword (use web site). This does not imply that other implementatiorthisf
: ' , onvention must support these same algorithms, nor dasstit |
7. Write the compressed array of bytes into th : . ; :
COMPRESSED DATA column in the appropriate row of %ther implementations from supporting other compressigo-a

the binary table corresponding to that tile. rithms.
8. Write the linear scaling and zero point values that weeglus
in Eq. 2 for that tile into th&SCALE) andZZERO columnsin 15.7.1. Rice compression algorithm
the same row of the binary table.))]
9. Repeat Steps 4 through 8 for each tile of the image. If ZCMPTYPE = "RICE_1’ then the Rice algorithm is used to
compress and uncompress the image pixels. The Rice algorith
While the above dithering algorithm is clearly not unique, w(Rice, R. F., Yeh, P.-S., and Miller, W. H. 1993, in Proc. o th
presentit here as a well defined method that should be pessibl9th AIAA Computing in Aerospace Conf., AIAA-93-4541-CP,
implement in almost any computer language. It should bechot8merican Institute of Aeronautics and Astronautics) is fglien
that an image that is quantized using this technique cdrbstil and very fast, compressing or decompressingpiielsysec on
unquantized using the simple linear scaling function gittgn modern workstations. It requires only enough memory to hold
Eq. 1. The only sideféect in this case is to introduce slightlya single block of 16 or 32 pixels at a time. It codes the pixels
more noise in the image than if the full subtractive dithgrt- in small blocks and so is able to adapt very quickly to changes
gorithm were applied. in the input image statistics (e.g., Rice has no problem kragd
cosmic rays, bright stars, saturated pixels, etc.).
The block size that is used should be recorded in the com-

15.5.4. ZQUANTIZ= ’SUBTRACTIVEDITHER 2’ pressed image header with

This dithering algorithm is identical to the
SUBTRACTIVEDITHER 1 algorithm described above, ex- ZNAMEn
cept that any pixels in the floating-point image that are équa ZVALn
to 0.0 are represented by the reserved value -2147483647 in

the quantized integer array. When the image is subsequeitiyhese keywords are absent, then a default blocksize of 32
uncompressed and unscaled, these pixels are restoredirto thleould be assumed.

’BLOCKSIZE’
16 or 32

32

The number of 8-bit bytes in each original integer pixel ealu Fommmmmmmm - B e +

should be recorded in the compressed image header with |16]15 13]12 1]
et e et e e L L E L e +

ZNAMEn = ’BYTEPIX’ | | opcode | data |
ZVALn =1, 2, 4, or 8 P e e e e e +

The significance of the data depends upon the instructioa. Th
If these keywords are absent, then the default value of 4sbylgstryctions currently implemented are summarized in aidet

per pixel (32 bits) should be assumed.. below.

15.7.2. GZIP compression algorithm Instruction Opcode Description

If ZCMPTYPE = ’'GZIP_1’ then the gzip algorithm is used to

compress and uncompress the image pixels. Gzip is the com- ZN 00 Output N zeros

pression algorithm used in the free GNU software utility e t HN 04 Output N high values

same name. It was created by Jean-loup Gailly and Mark Adler PN 05 Output N-1 zeros plus one
and is based on the DEFLATE algorithm, which is a combina- SH 01 Set high value, absolute
tion of LZ77 and Hfman coding. DEFLATE was intended as IH,DH 02,03 Increment or decrement hig
a replacement for LZW and other patent-encumbered data com- IS,DS 06,07 Like TH-DH, plus output on

pression algorithms which, at the time, limited the usapibif
compress and other popular archivers. Further informatipmut
this compression technique is readily available on thertete
The gzip algorithm has no associated parameters that ndwed t
specified with th&NAMEn and ZVALn keywords.

If ZCMPTYPE = *GZIP_2’ then the bytes in the array of imnZN Zero the next N£data) output pixels.
age pixel values are shied into decreasing order of signifiHN Set the next N output pixels to the current high value.
cance before being compressed with the gzip algorithm.HarotPN Zero the next N-1 output pixels, and set pixel N to the aurre
words, bytes are sffiled so that the most significant byte of ev- high value.
ery pixel occurs first, in order, followed by the next most-si§H Set the high value (absolute rather than incrementéipda
nificant byte, and so on for every byte. Since the most sigmific the high 15 bits from the next word in the instruction stream,
bytes of the pixel values often have very similar valuesuging and the low 12 bits from the current data value.
them together in this way often achieves better net comipiesBH Increment (IH) or decrement (DH) the current high \ahy
of the array. This is usually especiallffective when compress- the data value. The current position is nffeated.

In order to reconstruct a mask line, the application exaguti
these instructions is required to keep track of two valules, t
current high value and the current position in the outpu.lin
%he detailed operation of each instruction is as follows:

ing floating-point arrays. IS,DS Increment (IS) or decrement (DS) the current highevdly
the data value, and step, i.e., output one high value.
15.7.3. IRAF PLIO compression algorithm The high value is assumed to be set to 1 at the beginning of

a line, hence the IH,DH and IS,DS instructions are not ndgmal

If ZCMPTYPE = *PLIO.1" then the IRAF PLIO (Pixel List) al- eded for Boolean masks. If the length of a line segmentrof co

gorithm is used to compress and uncompress the image pixg N X .
The PLIO algorithm was developed to store integer-valued i ant value or the flierence between two successive high values

age masks in a compressed form. Typical uses of image ma % eeds 4096 (12 bits), then multiple instructions areirequo

are to segment images into regions, or to mark bad pixeld S ¢ cribe the segment or intensity change.

masks often have large regions of constant value hence are

highly compressible. The compression algorithm used igdasi5.7.4. H-Compress algorithm

on run-length encoding, with the ability to dynamically &l . . . :

level changes in the image, allowing a 16-bit encoding todmslu Hcompress is an the image compression package written by
regardless of the image depth. The worst case performance Bichard L. White for use at the Space Telescope Science
curs when successive pixels havéfetient values. Even in this INStitute. Hcompress was used to compress the STScl Diditiz
case the encoding will only require one word (16 bits) perkmaSKY Survey and has also been used to compress the preview im-
pixel, provided either the delta intensity change betweralp 29€S in the Hubble Data Archive. Briefly, the method used is:

is usually less than 12 bits, or the mask represents a zemefloo
step function of constant height. The worst case cannoteekce ¢, generalized to two dimensions), followed by

npix*2 words provided the mask depth is 24 bits or less. 2. quantization that discards noise in the image while nétgi
A good compromise between storagfiicgency and ef- the signal on all scales, followed by

ficiency o_f runtime_ access, while keeping things simple_, ig quadtree coding of the quantized ffazents.

achieved if we maintain the compressed line lists as vaiabl

length arrays of type short integer (16 bits per list element The technique gives very good compression for astronomical
gardless of the mask depth. A line list consists of a serisgof images and is relatively fast. The calculations are cawigdis-

ple instructions which are executed in sequence to reaartsir ing integer arithmetic and are entirely reversible. Consady,

line of the mask. Each 16 bit instruction consists of the &iijn the program can be used for either lossy or lossless conipness
(not used at present), a three bit opcode, and twelve bitataf d with no special approach needed for the lossless caselferg. t
i.e. is no need for a file of residuals.)

1. a wavelet transform called the H-transform (a Haar trans-

33

There are 2 user-defined parameters associated with the H- ZVALn = I
Compress algorithm: an integer scale factor that detemsiime . .
amount of compression, and a Boolean parameter the specifiesvherel is the integer scale value.
whether the image should be smoothed during the decompres-Smoothing Flag.At high compressions factors the decom-
sion operation, to reduce residual artifacts in the image. pressed image begins to appear blocky because of the way
.) information is discarded. This blockiness ness is greatly
— Scale Factor.The integer scale parameter determines the redyced, producing more pleasing images, if the image is
amount of compression. Scate 0 or 1 leads to lossless smoothed slightly during decompression. When done prop-
compression, i.e. the decompressed image has exactly theeny, the smoothing will not @ect any quantitative photo-
same pixel values as the original image. If the scale factor metric or astrometric measurements derived from the com-
is greater than 1 then the compression is lossy: the decom- pressed image. Of course, the smoothing should never be ap-
pressed image will not be exactly the same as the original. plied when the image has been losslessly compressed with a
For astronomical images, lossless compression is geyerall scale factor (defined above) of 0 or 1.
rather indfective because the images have a good deal of The smoothing option only needs to be specified when un-
noise, which is inherently incompressible. However, if 8om compressing the image, however, in many cases, this can best
of this noise is discarded then the images compress very well e determined by the person or project that creates the com-
The scale factor determines how much of the noise is dis- pressed image files. Thus it is recommended that the smooth-

carded. Setting scale to 2 times sigma, the RMS noise in the jnq flag be specified in the compressed image header with the
image, usually results in compression by about a factor of 7NyaMEn andzVALn keywords with

10 (i.e. the compressed image requires about 1.Fbitd),

while producing a decompressed image that is nearly indis- ZNAMEn
tinguishable from the original. In fact, the RMSfidirence ZVALn
between the decompressed image and the original image will .
be only about 2 sigma. Experiments indicate that this level A value of 0 means no smoothing, and any other value means
of loss has no noticeabldfect on either the visual appear- Smoothing is recommended. This should be regarded as only
ance of the image or on quantitative analysis of the image & recommendation which the image decompression program
(e.g. measurements of positions and brightnesses of sears a may override.

not adversely fiected. - . .
Using a Iargyer value)for scale results in higher compres- A Paper describing Hcompress was published in the

sion at the cost of larger filerences between the compress goceedings of the NASA Space and Earth Science Data

’SMOOTH’
0 or 1

and original images. A rough rule of thumb is that if scal ompression V\(orkshopz ed. James C. Tilton, Snow_bird, Uta_h,
equals?\l sigma,gthen the ing’llage will compress to abghit 3 arch 1992. This paper is reproduced in the Appendix B of this

bits/pixel, and the RMS dierence between the original andiocument.

the compressed image will be aboydNsigma. This crude

relationship is inaccurate both for very high compress@®n r15 8. Random Number Generator

tios and for lossless compression, but it does at least give a)

indication Of What to expect Of the Compressed images_ Th|S pOI’_tab!e random number generator algonthm comes from
For images in which the noise varies from pixel to pixel (e.ghe publication “Random number generators: good ones ade ha
CCD images, where the noise is larger for brighter pixeld@ find”, Communications of the ACM, Volume 31 , Issue 10
the appropriate value for scale is determined by the R CtOber 1988) PageSZ 1192' 1201 which is available on the
noise level in the sky regions of the image. For images th€eb. This algorithm basically just repeatedly evaluatesftinc-

are essentially noiseless, any lossy compression is aliee tion seed= (a * seed) mod m, where the values of a and m are
under sticiently close inspection of the image, but somghown below, but it is implemented in a way to avoid integer
loss is nonetheless acceptable for typical applicationse N overflow problems.

that the quantization scheme used in Hcompress is not de- .
signed to give images that appear as much like the origina/''t Fandom_generator(void) {
as possible to the human eye, but rather is designed to pro-,
duce images that are as similar as possible to the original un/~ initialize an array of random numbers */
der quantitative analysis. Thus, the emphasis is on disgard
noise without &ecting the signal rather than on discarding
components of the image that are not very noticeable to the
eye (as may be done, for example, by JPEG compression.)
The resulting compression scheme is not ideal for typical te
restrial images (though it is still a reasonably good method
for those images), but is believed to be close to optimal for
astronomical images.

It is not necessary to know what scale factor was used when
compressing the image in order to uncompressit, butitlls sti
useful to record the value that was used. It is recommended
that theZNAMEn and ZVALn) pair of keywords be used for
this purpose, with

ZNAMEn = ’SCALE’ }

int ii;

double a = 16807.0;
double m = 2147483647.0;
double temp, seed;

float rand_value[10000];

/* initialize the random numbers */

seed = 1;

for (ii = 0; ii < N_RANDOM; ii++) {
temp = a * seed;
seed = temp -m * ((int) (temp / m));
rand_value[ii] = seed / m; /* divide by m to get

34

If implemented correctly, the 10000th value of seed will
equal 1043618065.

35

16. Tiled Table Compression Convention of columns as the input table, however the data type of the
p columns in the output table will all have a variable-length

16.1. Preface byte data type, with TFORME '1QB’, which is appropri-

16.2. Overview ate for storing the compressed stream of bytes. Each row in
)) .) the compressed table corresponds to a tile of rows in the un-

This document describes a convention for compressing FFTS b compressed table.

nary tables that is modeled after the widely used FITS tiled- |n the case of variable-length array columns, the array of de

image compression method (White et al. 2009). The uncom- scriptors that point to each compressed variable-length ar

pressed table may be subdivided into tiles, each contath@g ray, as well as the array of descriptors from the input un-

same number of rows, then each column of data within each tile compressed table, are also compressed and written into the

is extracted, compressed, and stored as a variable-length a corresponding column in the compressed table. See section

of bytes in the output compressed table. Most of the header ke 6 for more details.

words from the uncompressed table, with only a few limited ex

ceptions, are copied verbatim to the header of the comptesse . o

table. These header keywords remain uncompresseffifieat 16-4. Compression Directive Keywords

access. The compressed table is itself a valid FITS bmah:isz_ta-rhe following optional ‘compression directive’ keywordi,

that contains the same number and order of columns as in K@sent in the header of the table that is to be compressed, pr

!Jncompressed table, and contains one row for each tile & royyye guidance to the compression software on how the table

in the uncompressed table. All the currently supported @@8¥ ghoy|d be compressed. The compression software will attemp

sion algorithms (Rice and 2 variants of Gzip) are losslessi06 1o gphey these directives, but if that is not possible, théwsoe

information is lost when the table is compressed. may disregard them and use an appropriate alternative.
This convention currently only supports FITS binary tables
and cannot be used to compress FITS ASCII tables. — FZTILELN The value field of this keyword shall contain an

integer that specifies the requested number of table rows in
each tile which are to be compressed as a group.
— FZALGOR The value field of this keyword shall contain a

The procedure for compressing a FITS binary table consfsts o character string giving the mnemonic name of the algorithm

16.3. Compression Overview

the following sequence of steps: that is requested to be used by default to compress every col-
umn in the table. The current allowed values 67dP_1,
A. Divide Table into Tiles (Optional) GZIP_2, andRICE_1. The corresponding algorithms are de-

In order to limit the amount of data that must be managed at scribed in Section 5.
one time, large FITS tables may be optionally divided into— FZALGn. The value field of these keywords shall contain a
tiles, each containing the same number of rows (except for character string giving the mnemonic name of the algorithm
the last tile which may contain fewer rows). Each tile of the that is requested to be used to compress colunafi the
table is compressed in turn and is stored in a single row in table. The current allowed values are the same as for the
the output compressed table. There is no fixed upper limit on FZALGOR keyword. TheFZALGn keyword takes precedence
the allowed tile size, but for practical purposes, it is o over theFZALGOR keyword in determining which algorithm
mended that it not exceed 100 MB so as to not impose too to use for a particular column if both keywords are present.
great of a memory resource burden on software that com- Ifthe column cannot be compressed with the requested algo-
presses or uncompresses the table. rithm (e.qg., if it has an inappropriate data type), then adif

B. Decompose each Tile into the Component Columns compression algorithm will be used instead.
FITS binary tables are physically stored in row-by-row se-
quential order, such that the data values for the first row _L{b
each column are followed by the values in the second row,
and so on. Because adjacent columns in binary tables d&fith only a few exceptions, all the keywords from the uncom-
contain very non-homogeneous types of data, it can be chaitessed table are copied verbatim, in order, into the hexdlee
lenging to dficiently compress the native stream of bytes inompressed table. The header keywords remain uncompressed
the FITS tables. For this reason, the table is first decontpoger ease of access. Note in particular that the values ofdhe r
into its component columns, and then each column of dataserved column descriptor keywor@$YPEn, TUNITn, TSCALn,
compressed separately. This also allows one to choose TEROn, TNULLn, TDISPn, andTDIMn, as well as all the column-
most dficient compression algorithm for each column. specific WCS keywords defined in the FITS standard, have the

C. Compress Each Column of Data same values in both the original and in the compressed table,
Each column of data is compressed with a suitable compresth the understanding that these keywords apply to themAco
sion algorithm. If the table is divided into tiles, then tleeree pressed data values.
compression algorithm must be applied to a given column The only keywords that are not copied verbatim from the un-
in every tile. In the case of variable-length array columnspmpressed table header to the compressed table headee are t
(where the data are stored in the table heap), each individoaandatoryNAXIS1, NAXIS2, PCOUNT, and TFORMn keywords,
variable length vector is compressed separately. and the optionalCHECKSUM, DATASUYM, and THEAP keywords.

D. Store the Compressed Bytes These keywords must necessarily describe the contenteof th
The compressed stream of bytes for each column is writempressed table itself. The original values of these kegsvo
ten into the corresponding column in the output table. The the uncompressed table are stored in a new set of reserved
compressed table has exactly the same number and okiywords in the compressed table header. The complete set of

.5. Keywords in the Compressed Table

36

keywords that have a reserved meaning within the header ofised in the widely distributed GNU free software utility bt
tile-compressed binary table are listed below: same name. It was created by Jean-loup Gailly and Mark Adler.
.] . It is based on the DEFLATE algorithm, which is a combina-
— ZTABLE (required keyword). The value field of this keywordion of Lz77 and Héfman coding. Further information about
shall contain the logical value T. This indicates that théS-| thjs compression technique is readily available on the \Wab.
blnary table extension contains a tlle-compressed blraary tgzip -1” option is genera”y used which Significanﬂy |mm
ble. the compression speed with only a small loss of compression
— ZNAXISI1 (required keyword). The value field of this key-efficiency.
word shall contain an integer that gives the value of the |tjsimportantto note that any numerical data values must be

NAXIS1 keyword in the original uncompressed FITS tablgrranged in big-endian byte order (the FITS standard) befa
header. This represents the width in bytes of each row in thgray of bytes is compressed.

uncompressed table.
— ZNAXIS2 (required keyword). The value field of this key-
word shall contain an integer that gives the value of theb-6.2. GZIP.2

NAXIS2 keyword in the original uncompressed FITS tablgpjs |ossless compression algorithm is designated by the ke
header. This represents the number of rows in the uncofisrq zcTYPn = 'GZIP.2’. This algorithm is a variation of the
pressed table. , , GZIP_1 algorithm in which the bytes in the arrays of numeric
— ZPCOUNT (required keyword). The value field of this key-ya15 columns are preprocessed byfiing them so that they are
word shall contain an integer that gives the value of thg anged in order of decreasing significance before being co
PCOUNT keyword in the original uncompressed FITS tab'%ressed. For example, a 5-element array of 2-byte (16+h) i

header. i - i :
) ,) er values, with an original big-endian byte order of
— ZFORMn (required indexed keywords). These required arra%/ g ¢ y
keywords supply the character string value of the corre- Al A2 B1 B2 C1 C2 D1 D2 El1 E2,

spondingTFORMn keyword that defines the data type of the , ,
cglumn i%rthe origin);I uncompressed FITS tab|e.yp will have the following byte order after skiing the bytes:

— ZTHEAP (optional keyword). The value field of this keyword Al B1 C1 D1 E1 A2 B2 C2 D2 E2.
shall contain an integer that gives the value of THEAP
keyword if present in the original uncompressed FITS tabilehere Al, B1, C1, and D1 are the most significant bytes from
header. In practice, this keyword is rarely used. each of the integer values. Byte shimg can only be performed

— ZTILELEN (required keyword). The value of this keywordfor numeric binary table columns that haVEBORMn data type
shall contain an integer representing the number of rows @fdes offl, 1, K, E, D, C, orM. The bytes in columns that
data from the original binary table that are contained irheabave aL, X, or A type code are never shied.
tile of the compressed table. The number of rows in the last This byte-shéfling technique has been shown to be espe-
tile may be less than in the previous tiles. Note that if the enially beneficial when compressing floating-point values be
tire table is compressed as a single tile, then the comptessause the bytes containing the exponent and the most sagtific
table will only contains a single row, and tAEILELEN and bits of the mantissa are often similar for all the floatingntoi
ZNAXIS2 keywords will have the same value. values in the array. Thus these repetitive byte values géiper

— ZCTYPn (required indexed keywords). The value field otompress very well when grouped together in this way. HDF
these keywords shall contain a character string giving ti&roup has used this byte-dling technique when compressing
mnemonic name of the algorithm that was used to corklDF5 data files (HDF 2000).
press columm of the table. The current allowed values are
GZIP_1, GZIP_2, andRICE_1, and the corresponding algo-
rithms are described in Section 5. 16.6.3. RICE1

— ZHECKSUM (optional keyword). The value field of this key-This lossless compression algorithm is designated by thie ke
word shall contain a character string that gives the value @brd ZCTYPn = *RICE.1’ and may only be applied to integer
the CHECKSUM keyword in the original uncompressed FITSJata type columns that ha@®YPEn data type code values of
table header. 'B’, ’I', or 'J’. The Rice algorithm (Rice, 1993) is very sim-

— ZDATASUM (optional keyword). The value field of this key-ple and fast. It requires only enough memory to hold a single
word shall contain an integer that gives the value of thslock of 32 integers at a time and is able to adapt very quickly
ﬁAT[éSUM keyword in the original uncompressed FITS tabléo changes in the input array statistics.

eader.

16.7. Compressing Variable-Length Array Columns

16.6. Supported Compression Algorithms))) .
Compression of binary tables that contain variable-leragthy

This section describes the currently supported compressio (VLA) columns (with aP or Q data type code) requires special
gorithms. Other compression algorithms may be added in tbénsideration because the data values in these columneare n
future. stored directly in the table, but instead are stored in whediled

the ‘data heap’ which follows the main table. The VLA column
in the main data table itself only contains a ‘descriptohjein

is composed of 2 integers that give the size and locationef th
This lossless compression algorithm is designated by tiie kactual array in the heap. When compressing a variable lergth
word ZCTYPn = ’GZIP_1’. Gzip is the compression algorithmray column, one must first process each individual VLA in turn

16.6.1. GZIP_1

37

by reading it from the uncompressed table, compressinigat) t
writing the compressed bytes to the heap in the compressed ta
ble. The descriptors that point to these compressed VLAg mus
be stored in a temporary array of descriptors that has béen al
cated for this purpose. Once all the individual VLAs in théco
umn have been processed, that temporary array of deseriptor
then itself compressed with GZIP, and then finally written into

the heap of the compressed table.

There is one other complexity that must be addressed when
dealing with VLA columns: one needs to know the original de-
scriptor values to be able to write the uncompressed VLA& bac
into the same location in the heap as in the original uncom-
pressed table. For this reason, we concatenate the arras of d
scriptors from the uncompressed table onto the end of the tem
porary array of descriptors (to the compressed VLASs in the-co
pressed table) before the 2 combined arrays of descripters a
compressed and written into the heap in the compressed table

When uncompressing a VLA column, 2 stages of uncom-
pression must be performed: First, the combined array of de-
scriptors must be uncompressed, then these descriptousede
one by one to read the compressed VLA from the compressed
table, uncompress it, and then write it back into the corect
cation in the uncompressed table. Note also that the désigip
to the compressed VLAs are always 64-bit Q-type descriptors
but the descriptors from the original uncompressed tablelea
either Q-type or P-type.

The following example illustrates how this works in prac-
tice: suppose one compresses a 100 row table containing a col
umn of 2-byte integer variable length arrays (WitFORMn =
’1PI’). When compressing this column, each of the 100 indi-
vidual VLAs are read from the uncompressed table, compdesse
with the appropriate algorithm, and then written to the eerr
spondingTFORMn = ’1QB’ column in the compressed table.
After all the VLAs have been processed, the array of 100 -typ
descriptors from the uncompressed table are concatenated o
the end of the temporary array of 100 'Q-type descriptormfro
the compressed table, and this combined array is compressed
with the GZIP1 algorithm and written into the compressed ta-
ble.

References
HDF 2000, “Performance Evaluation Report: gzip,
bzip2 compression with and without dofing,”
http://www.hdfgroup.org/HDF5/doc_resource/H5Shuffle_Perf.pdf
Rice, R. F.,, Yeh, P.-S., and Miller, W. H. 1993, in Proc. of the
9th AIAA Computing in Aerospace Conf., AIAA-93-4541-
CP, American Institute of Aeronautics and Astronautics
White, R. L., Greenfield, P., Pence, W., Tody, D., and
Seaman, R. 2009, “Tiled Image Compression Convention”,
http://fits.gsfc.nasa.gov/registry/tilecompression.html

38

17. A Hierarchical Grouping Convention and multiple FITS files. Section 2 discusses the content-of ta
ble extensions used to define HDU groupings. Section 3 lists
17.1. Preface those keywords recommended for headers of group member ex-

This paper describes a grouping convention for FITS that fignsions. Finally, Section 4 provides sample headers friars F
cilitates the construction of hierarchical associatiohsleader '@PIe extensions containing grouping structures.
Data Units (HDUs). The grouping convention uses FITS table
structures (ASCII or binary) to encapsulate pertinentim@- ;7 3 Group Tables
tion about the HDUs belonging to a group. Group members may
reside in a single FITS file or be distributed in many FITS file#A group table, as defined in this convention, is a FITS ta-
the FITS files themselves may reside ofietient computer sys- ble extension that contains a list of all the associated mem-
tems. ber HDUs in the group. Group tables may be represented by
either FITS ASCII tables XTENSION=,.’TABLE....’) or bi-

) nary tables XTENSION=_’BINTABLE’), and are uniquely dis-
17.2. Introduction tinguished from other types of FITS tables by having the
The rules for generalized extensions in FITS (Grogigdl., EXTNAME_=.’GROUPING’ keyword and value in the header. The

1988) provide for FITS formatted files containing more thae o ©ther required or recommended keywords and columns in a
header data unit. By using combinations of ASCII tables {efar 9"0UP table are described in the following sections. _
etal., 1988), binary tables (Cottcet al., 1994) and image exten- Th_ere may be zero, one, or more group tables within a given
sions (Ponzt al., 1994) related data sets requiringfdient data F1TS file. Each group table may reference any number of HDUs.
structures may be stored in the same FITS file, each within &€ entire set of HDUs referenced in a group table, along with
own HDU. Unfortunately, once the related data sets are segitee group table itself, formgroup . Individual HDUs referenced
gated into separate HDUs the relationship between thentes ofin @ group table are said to embers of the group or group

lost. members.

The FITS standard currently allows for simple hierarchical Groups can contain any type and mix of HDU. This includes
associations of HDUs within a single FITS file through use @l of the IAU-endorsed extensions as well as other extessio
the EXTLEVEL keyword. However, this mechanism has Se\,erg;_]at conform to the requirements for ggnerallzed FITS exten
major limitations. First, its use is not well defined fldrent or- Sions. Note that a group may also contain other groups as mem-
ganizations may use EXTLEVEL for widely varying purposeBers. since a group table is itself a FITS extension. Thisifea
and still not violate the FITS standard. Secondly, it does ndllows for the construction of hierarchical structures @t
specify a mechanism for defining distinct multipgeoups of ~ Within a single FITS file or across many FITS files.

HDUs within a FITS file. Lastly, it cannot be used to associate

HDUs residing in qﬁferent FITS filgs. Except fqr very Simplel7.3.l. Group Member Identification Methods

cases, FITS contains no mechanism for creating or preggrvin
associations between HDUs or groups of HDUs. Group tables specify the names and locations of FITS files con

As the volume and complexity of FITS formatted data grow$aining member HDUs as well as identifying members within
the need for a recognized and versatile HDU grouping mectlibeir FITS files. The name and location of each FITS file is spec
nism increases. Individuals can be overwhelmed trying ta-mdied by using the World-Wide Web (Berners-Lee, 1994) Uniform
age and analyze large data sets unless those sets arelogi&dsource Identifiers, or URIs. All current and future fornfis o
organized. Software tools also require data organizatiander URIS, such as Uniform Resource Locators (URL) and the pro-
to access all necessary components of an observationaiorul posed Uniform Resource Names (URN), shall constitute valid
or experimental data set. names, although the group table must specify the type of URI

As an example of where grouping capabilities within FIT®eing used. If the group member resides inféedent FITS file
would be useful, consider the following. It is desirable tos but on the same computer system then partial URIs (spedyfical
bine a set of observations from a given time period into alsingoartial URLs) may be used instead of absolute URIs to specify
FITS file for transport and archival purposes. For each alaserthe member’s file location. If the group member resides in the
tion there is an observation log, an event list, a derivedginasame FITS file as the group table itself, then the URI field may
and a set of instrument calibration data; furthermore,sdad- be left blank.
servations share a common set of calibration data. By using a The location of member HDUs within FITS files may be
grouping mechanism each [log, event list, image, calibrgset specified in two dferent ways, either byeference or by abso-
could be logically tagged as an associated observatiorpgmod lute position. The reference identification method uses the val-
the calibration data could be made a part of marfiedént ob- ues of the XTENSION, EXTNAME and EXTVER keywords to
servation groups, thus eliminating the need to store it tfar uniquely identify the member HDU within the FITS file. The po-
once. Software could retrieve all the information aboutwegi sition method uses the HDU order number to identify members,
observation simply by extracting those HDUs defined in the twith the primary array having order value 0, the first extensi
ble that identifies members of the group. Also, observatains order value 1, and so on. Users may choose either or both iden-
the same object from fferent observational periods could bdification methods when constructing a group table.
combined into a group and accessed as a unit, even though thewhile the reference method is not invalidated by a reorder-
HDU sets comprising the fferent observations reside in sepaing of HDU positions within FITS files, it does require thatha
rate FITS files. member HDU have a unique set of (non-FITS-required) key-

The following sections describe a scheme for implementord values, Thus, this method may present problems for FITS
ing a hierarchical grouping of header data units within Engfiles whose headers cannot be easily modified, such as FIES file

39

on read-only media. The position identification method pies — TTYPEn...=.’MEMBER_NAME’ — character field: Contains
for quick “random” access to the member HDUSs, since software the value of the EXTNAME keyword from the group mem-
does not have to sort though each extension looking for the co ber’s header. In the case of primary HDUs where the
rect set of keyword values, but will befacted if the order of EXTNAME keyword is not defined or when the member ex-
member HDUs within their FITS files is changed (please note: tension has no EXTNAME keyword present, this field may
there is nothing within the current FITS standard goverhiogy contain the FITS null value appropriate for the column type.
or when HDUs may be reordered within their files). — TTYPEn...=.’MEMBER_VERSION’ — integer field: Contains
the value of the EXTVER keyword from the group member’s
header. In the case of primary HDUs, or if the EXTVER key-
17.3.2. Group Table Keywords word is not present in the member header then a value of 1

In addition to the standard required FITS table extensign ke ~ Should be assumed.
words, the following keywords are required in the header of a

group table: If members are identified by file position then the following

column is required:

— EXTNAME (character): This value of the FITS reserved _ TTYPEn...=.’MEMBER_POSITION’ — integer field:

keyword uniquely identifies that this FITS extension con- Contains a X - Sl

g group member's position within its FITS
tﬁlns Ell grc‘gggBEI.NFg,r group tables EXTNAME must have fjie The file's primary header is given a position value of 0,
the value T . the first extension is given a position value of 1, and so on. If

— EXTVER (positive integer): The value of this FITS re- for some reason a group member's ‘MEMBEFROSITION’
served keyword serves as a group ID number that uniquely |6 hecomes invalid or undefined, then this column field

distinguishes this group from any other groups that may be : ; :
defined in the same FITS file. All HDUs in a given FITS igﬁjur:]dnt;ﬁr%”gs with the FITS null value appropriate for the

file with EXTNAME. .=’ GROUPING’ must have a unigue in-
teger EXTVER value. This group number may also be used ¢ e or all of the group members reside in FITS files sep-

in the header of each group member to identify the group : ;
to which the member belongs (see secfion 1¥.3.3, GRPI thZI;rc())rr];g:fi}rg(rj?up table itself then the following two cohs

keyword).
)]] — TTYPEn_.=. MEMBER_LOCATION’ - character field:
_ The following keyword is strongly recommended for inclu- contains the location of the group member’s FITS file using
sion in the header of each group table: Uniform Resource Identifiers. If the FITS file resides on

the same computer system as the group table, then partial
— GRPNAME (character): This keyword contains the name URIs may be used instead of absolute URIs. If the group
associated with the group table. GRPNAME values are case- member resides in the same FITS file as the group table, or
insensitive and should only contain letters, digits, anel th the MEMBERLOCATION value becomes invalid then this
underscore character (and not contain any embedded blankfield may be filled with the FITS null value appropriate for
(ASCII 32) characters). the column type.
— TTYPEn_.=_ MEMBER_URI_TYPE’ - character field:
Contains the mne-monic for the Uniform Resource Identifier
type used in the corresponding MEMBHROCATION
17.3.3. Group Table Columns field. Recommended values for this column field are ‘URL

The number of columns required in a group table depends on for_the Uniform Resource Locator and ‘URN' for the
which method is used to identify the members (and recall that Uniform Resource Name. As other URI types are defined
both methods may be used within the same group). If the mem- their mnemonics will also become acceptable values for this

bers are identified by reference then the following colurmes a field. In cases where the MEMBERBRI_TYPE is undefined
required: (such as a null or blank MEMBEROCATION field value)

this field may contain the FITS null value appropriate for

— TTYPEn,_.=.’MEMBER_XTENSION’ — character field: the column type.
Contains the value of the XTENSION keyword from the
group member's header. In the case of primary HDUs Besideg the table columns defined above, a group table
where there is no required XTENSION keyword, thé&nay contain any number of user defined columns. Group ta-
value of ‘PRIMARY’ will be used instead. Therefore, theble columns may appear in any order within the table and their
current valid entries for this column arePRIMARY..’, TTYPEn values are not to be considered case-sensitive.
"TABLE_..’, ’BINTABLE’, 'IMAGE_..’ or any other IAU
FITS Wor_klng Group.reglstered XTENSION value. Note; , 4 Keywords for Group Member Extensions
that the single quotation marks are used only to designate
the string boundaries and are NOT to be included with tido additional keywords are required for HDUs that are mem-
XTENSION values in the column entries; the trailing blankbers of a group. This rule is to ensure that all currentlytexis
shown in each string are optional. This field may contaiRI TS files and their constituent HDUs may all be part of this-co
the FITS null value appropriate for this column type if theention. There are, however, several grouping related kegsv
value is unknown (e.g., if the position identification methowhose presence is strongly recommended in newly created hea
described below is used to identify the member location). ers. The description of these keywords follow.

40

— EXTNAME (character): This keyword is the FITS re-

served keyword EXTNAME. The use of EXTNAME al- XTENSION=

lows HDUs of a given XTENSION type with similar struc-BITPIX
ture and content to be identified with a common name taAXIS
Additionally, the grouping convention uses EXTNAME toNAXIS1
identify group members by reference (see secfion]17.RAXIS2
For any HDU belonging to a group, the combination o&COUNT
XTENSION, EXTNAME and EXTVER keyword values PCOUNT
should uniquely identify the HDU within its FITS file. An TFIELDS
exception to this rule occurs when group tables are theEXTNAME
selves members of a group. In this case the combinatiBKTVER
of EXTNAME and EXTVER keyword values alone mustGRPID1
uniquely identify the HDU within its FITS file. This is be- GRPID2
cause within a given FITS file the group tables may be bulfTYPE1
from a mix of ASCIl RTENSION=_’TABLE....’)and binary TFORM1
tables KTENSION=_ BINTABLE). END
EXTVER (integer): This keyword is the FITS reserved
keyword EXTVER. The use of EXTVER allows unique

’BINTABLE’

= = Ul N

’GROUPING’

3
1
2
"MEMBER_POSITION’
13’

/

/
/
/
/
/
/
/
/
/
/
/
/
/

This is a binary table

Table contains 8-bit bytes
Number of axis

Width of table in bytes
Number of member entries
Mandatory FITS keyword
Number of bytes in HEAP area
Number of columns in table
This BINTABLE contains a gro
The ID number of this group
Part of group 1

Part of group 2

Position of member within fi
Datatype descriptor

Example 2: A group containing 150 members, some of

identification of HDUs with a given XTENSION type andwhich reside in FITS files dierent from that of the group ta-

EXTNAME value. Additionally, the grouping conventionble. This group is not a member of any other group, although it
uses EXTVER to identify group members by reference (sé&the seventh group table defined in the FITS file. All member
sectior IZPR). For any HDU belonging to a group, the combientification methods are used.

nation of XTENSION, EXTNAME and EXTVER keyword

values should uniquely identify the HDU within its FITS file;XTENSION= ’BINTABLE’

however, please note the exception outlined above. BITPIX 8
GRPIDn (integer): A series of indexed keywords that deNAXIS 2
note the group(s) to which an HDU belongs. The value #AXIS1 79
GRPIDn is the EXTVER value of the nth group table thaiAXIS2 150
the HDU is a member of. In this sense, the EXTVER valueCOUNT 1
of a group table defines a unique ID for the group within BCOUNT 0
FITS file. If the value of GRPIDn is negative, then the HDU'FIELDS 6
is a member of a group defined in another file. In this case tRETNAME = ’GROUPING’

absolute value of GRPIDn is the EXTVER value of the exeXTVER 7
ternal group table, and the corresponding GRPLCn keywoFdYPE1 "MEMBER_LOCATION’
holds the URI of the FITS file containing the group’s tablelFORM1 "30A '

The GRPIDn keywords (and their associated GRPLCn keyTYPE2
words) not only identify HDUs as members of groups, butFORM2
also allow group members to “point” back to their group talTYPE3

"MEMBER_URI_TYPE’
13A ’
"MEMBER_POSITION’

bles. Any software that might change the position or natuf&ORM3 1] ’
of the HDU would know that it was a member of a group angTYPE4 = 'MEMBER_XTENSION’
that the group table would require updating. TFORM4 "8A ’

— GRPLCn (character): A series of indexed keywords thatTTYPES "MEMBER_NAME’
contain the Uniform Resource Identifiers corresponding #7ORM5 ’30A ’
the GRPIDn keyword. The GRPLCn values follow thdTYPEG "MEMBER_VERSION’
same syntax rules as those specified for the group tablEEIRM6 1] ’

MEMBER_LOCATION column (see section17.8.2). It isEND
unnecessary to have a GRPLCn keyword accompany a
GRPIDn keyword when the value of the GRPIDn keyword

is positive. Alternatively, the value of the GRPLCn keywsrd
may be reference strings that refer to the member’s group ta-
ble HDU (see section 14.6).

17.5. Example Group Table Headers

The following are examples of valid group table headersubkat
different combinations of identification methods.

Example 1: A group containing five members all of which
reside in the same file as the group table. This group is itself
member of two other groups and both of those groups’ tables
reside in the same file as this extension. The member position
identification method is used to locate member HDUs.

N N N N T N N

This is a binary table

Table contains 8-bit bytes
Number of axis

Width of table in bytes
Number of member entries
Mandatory FITS keyword
Number of bytes in HEAP area
Number of columns in table
This BINTABLE contains a gro
The ID number of this group
URI of file containing membe
Datatype descriptor

URI type of MEMBER_LOCATION
Datatype descriptor
Position of member within fi
Datatype descriptor
XTENSION keyword value of me
Datatype descriptor

EXTNAME keyword value of mem
Datatype descriptor

EXTVER keyword value of memb
Datatype descriptor

41

Example 3: A group containing 17 members, some of which Example 4: A group containing 82 members, some of which
reside in FITS files dferent from that of the group table. Thisreside in FITS files dierent from that of the group table. This
group is a member of six other groups, two of which are definggloup is a member of three other groups, and makes use of the
in FITS files on other computer systems and one that is definediember position and member file location methods. One user
a FITS file on the same computer system. The member referedeéined column is present. Note that in this example an ASCII
identification and member file location methods are used. Twable (as opposed to a binary table) is used to define the group
user defined columns are also present.

XTENSION=

BITPIX
NAXIS
NAXIS1
NAXIS2
GCOUNT
PCOUNT
TFIELDS
EXTNAME
EXTVER
GRPID1
GRPID2
GRPID3
GRPID4
GRPLC4
COMMENT
GRPID5
GRPLC5S
GRPID6
GRPLC6
COMMENT
TTYPE1
TFORM1
TTYPE2
TFORM2
TTYPE3
TFORM3
TTYPE4
TFORM4
TTYPES
TFORM5
TTYPEG
TFORM6
TTYPE7
TFORM7
END

42

L. . XTENSION= ’TABLE ! / This is an ASCII table
'BINTABLE’ / This is a binary tabg = 8 / Table contains 8-bit ASCII
8 / Table contains 8- bltNﬁxfgs _ 2 / Number of axis
2 / Number of axis NAXIS1 = 46 / Width of table in bytes
180 / Width of table in byﬁgilsz = 82 / Number of member entries
17/ Number of member ent 66NT = 1 / Mandatory FITS keyword
1 / Mandatory FITS keywopdoyy - 0 / Mandatory FITS keyword
0 / Number of bytes in HEAD Eﬁga: 4 / Number of columns in table
7 / Number of columns ing}3Rifir - *GrOUPING’ / This TABLE contains a group
' GROUPING / This BINTABLE contalpgrgpRroup 31 / The ID number of this group
7 / The ID number of thléRﬁfBTp = 3 / Member of group 3
3 / Member of group 3 cppypy; - 9 / Member of group 9
6 / Member of group 6 cpprp3 - 27 / Member of group 27
18 / Member of group 18 TTYPE]l = ’USER INFO_1’ / A user supplied column
-1 / Member of external 9%RBRM % ’ / Datatype descriptor
"http://fits.gsfc.nasa.gov/FITS/filel. f1t CéLlocatlon o) 1 / Starting table column for f

FITS file ContalnlnﬂT?FEEp — ’MEMBER_LOCATION’

-5 / Member of external QT?BRME — 'A30
’JFITS/file5.fits’ / Location of file con§gEging group

11

/ URI of file containing memb

/ Datatype
/ Starting

descriptor
table column for f

-2 / Member of external g%9 PE%

= "http://www.noao.edu/irafdir/file2.fits’ ng
FITS file contalnlngBQBEgp

/ A user supplied COlu??YPE4

"USER_INFO_1’
’25] ’
’MEMBER_LOCATION’
’30A ’
"MEMBER_XTENSION’
!8A ’
"MEMBER_NAME’
’30A ’
"USER_INFO_2’

!SA)
"MEMBER_VERSION’
!1J ’
"MEMBER_URI_TYPE’

— !3A ’

= 'MEMBER_URT_TYPE’
R3tion@
= 41

/ URI type
/ Datatype
/ Starting

of MEMBER_LOCATION
descriptor
table column for f

= 'MEMBER_POSITION’ / XTENSION keyword value of m
/ Datatzp; descriptor tpopMg - 13 ’ / Datatype descriptor
/ URL o ile conta1n1§gcgggber HDU 44 / Starting table column for f

/ Datatype descriptor

/ XTENSION keyword value of member

/ Datatype descriptor

/ EXTNAME keyword valué7dE sAekhew/edgments
/ Datatype descriptor

/ A user supplied col
/ Datatype descriptor

gratefully acknowledge the support of the NASA Applied
Information Systems Research Program, underwhich tfiste

/ EXTVER keyword value'oRoHfialheiunded.
/ Datatype descriptor

/ URT type of MEMBER_LQGATTRN,Ei@Ad Reference Strings
/ Datatype descriptor

In certain circumstances, it may be convenient to pointefar,
to a HDU from another HDU. Such references neither imply or
require the hierarchical association information as adidvby
grouping table structures, but still serve a similar fumctby
pointing to another data structure residing in a separatg HD

If referring to a single HDU is preferable to forming a hier-
archical association and including the given HDU as a member
then keyword and table column values may employ the same
syntax as used for the identification of group members. Fer no
tational convenience, thus allowing all the informatiorb&oin-
cluded in a single keyword value or table column entry, te re
erence should be expressed as a single character strintyef ei
type 1 format,

'"MEMBER _LOCATION'"MEMBER _XTENSION'"MEMBER _EXTNAME'MEMBER _EXTVER’

or of type 2 format,

'"MEMBER _LOCATION’”"MEMBER _POSITION’
where each quantity enclosed in single quotation marks-is re
placed by its corresponding value as defined in se€fionA.7.3.
The colons (", ASCII 58) appearing in the expressions &ge s

nificant and must be used to separate the fields of the strirotp. S — J/archivgsample.fits:1

expressions are known eeference strings. — sample.fits

Default values in the HDU reference strings are permitted (note: using default value for MEMBEROSITION’)
but must obey the following rules. Note that by implicatiore® — If the referenced HDU resides in the same FITS file:
erence string may begin with a colon field separator (", ASC — BINTABLE:EVENTS:1
58) but may not terminate with a colon field separator. — :BINTABLE:EVENTS

. (note: using default value for MEMBERXTVER’)
—For type 1 format reference strings, the .

'"MEMBER _XTENSION' and 'MEMBEREXTNAME’

fields must always be specified. Please note that reference strings are meant only to supple-
— For type 1 format reference strings, a non-existentent and enhance the hierarchical grouping convention as de

'MEMBER_EXTVER' is permitted and infers an EXTVER scribed above. In particular, reference strings should e u

value of 1. sparingly and with care; they do not provide the same level
— For type 2 format reference strings, one of thef data format structure and long-term archival stabilisytiae

two possible fields (MEMBERLOCATION' or grouping tables themselves.

'MEMBER _POSITION’) must always be specified, but see

the rule below on non-existent 'MEMBEROCATION’

fields.
— Type 1 and type 2 format reference strings with a non-

existent 'MEMBERLOCATION’ value are permitted and

infer that the referred-to HDU resides in the same FITS file

as the HDU containing the reference string. To denote the ab-

sence of the 'MEMBERLOCATION'’ value, the first char-

acter of the reference string shall be a colon (", ASCII .58)
-A reference string containing only the

'MEMBER_LOCATION’ field shall infer a type 2 for-

mat with a 'MEMBERPOSITION’ value of 1 (i.e., the

first non-primary array FITS file extension). Note that a

reference string of this form completely conforms to the

syntax of a URI.

Below are examples of valid reference strings. In each case
the following values are assumed:

— 'MEMBER_LOCATION’ =
file://www.archive.edfarchivgsample.fits,

— 'MEMBER_XTENSION’ = BINTABLE,

— 'MEMBER_EXTNAME' = EVENTS,

- 'MEMBER_EXTVER’ =1, and

'MEMBER_POSITION'= 1.

Note that the values of 'MEMBEHEEXTVER' and
'MEMBER_POSITION’ chosen for the examples demon-
strate the use of the default reference string fields; thecehaf
different values would make the default cases invalid.

— If the referenced HDU resides in afiirent FITS file and on
a different computer system:
— file://www.archive.edlarchivgsample.fits:BINTABLE:EVENTS:1
— file://www.archive.edlarchivgsample.fits:BINTABLE:EVENTS
(note: using default value for MEMBERXTVER’)
— file://www.archive.edlarchivgsample.fits:1
— file://www.archive.edlarchivgsample.fits
(note: using default value for MEMBEROSITION’)
— If the referenced HDU resides in afiirent FITS file but on
the same computer system:
— /archivgsample.fits:BINTABLE:EVENTS:1
(note: absolute file path specified)
— archivgsample.fits:BINTABLE:EVENTS:1
(note: relative file path specified)
— sample.fits:BINTABLE:EVENTS:1
(note: relative file path specified)
— /archivgsample.fits:BINTABLE:EVENTS
(note: using default value for MEMBERXTVER’)

43

17.8. Appendix Il. Application Program Interface

This appendix describes an application program interfA&g)(
in ANSI C that was implimented by the ISDC to facility cre-
ating and managing grouping tables by the INTEGRAL mis-
sion application software. Use of this particular API is net
quired and is shown here only for informational purposess Th
API software is distributed and supported as a componeihieof t
CFITSIO software library that is maintained by the HEASARC
at NASA/GSFC.

This API provides functions for the creation and manipu-
lation of FITS HDU Groups, as defined in the "Hierarchical
Grouping Convention for FITS” A groupis a collection of HDUs
whose association is defined by@uping table. HDUs which
are part of a group are referred to member HDUs or sim-
ply asmembers. Grouping table member HDUs may themselves
be grouping tables, thus allowing for the construction ofrop
ended hierarchies of HDUs.

Grouping tables contain one row for each member HDW?

The grouping table columns provide identification inforioat
that allows applications to reference or "point to” the memb
HDUs. Member HDUs are expected, but not required, to con-
tain a set of GRPIDIGRPLCn keywords in their headers for
each grouping table that they are referenced by. In thiseséms
GRPIDGRPLCn keywords "link” the member HDU back to
its Grouping table. Note that a member HDU need not reside in
the same FITS file as its grouping table, and that a given HDU
may be referenced by up to 999 grouping tables simultangousl

Grouping tables are implemented as FITS binary tables with
up to six pre-defined column TTYPEnN values:

'"MEMBER _XTENSION’, 'MEMBER _NAME’,

'"MEMBER _VERSION’, 'MEMBER_POSITION’,

'MEMBER _URI_TYPE’ and '"MEMBER LOCATION’.

The first three columns allow member HDUs to be identified
by reference to their XTENSION, EXTNAME and EXTVER
keyword values. The fourth column allows member HDUs to
be identified by HDU position within their FITS file. The last
two columns identify the FITS file in which the member HDU
resides, if diferent from the grouping table FITS file.

Additional user defined "auxiliary” columns may also be in-
cluded with any grouping table. When a grouping table isedpi
or modified the presence of auxiliary columns is always taken
into account by the grouping support functions; howeveg, th
grouping support functions cannot directly make use ofdhis.

If a grouping table column is defined but the corresponding
member HDU information is unavailable then a null value of
the appropriate data type is inserted in the column fielgget
columns (MEMBERPOSITION, MEMBERVERSION) are

defined with a TNULLn value of zero (0). Character field4.

columns (MEMBERXTENSION, MEMBER NAME,
MEMBER_URI_TYPE, MEMBERLOCATION) utilize an
ASCII null character to denote a null field value.

The grouping support functions belong to two basic cate-
gories: those that work with grouping table HDUs and thosé th
work with member HDUs. Two functions, fitsopy.group() and
fits_-removegroup(), have the option to recursively cggglete
entire groups. Care should be taken when employing these fun

17.8.1. Grouping Table Routines
1.

Create (append) a grouping table at the end of the cur-
rent FITS file pointed to by fptr. The grpname parame-
ter provides the grouping table name (GRPNAME keyword
value) and may be set to NULL if no group name is to
be specified. The grouptype parameter specifies the desired
structure of the grouping table and may take on the val-
ues: GTID_ALL _URI (all columns created), GID_REF

(ID by reference columns), GID_POS (ID by posi-
tion columns), GTID_ALL (ID by reference and position
columns), GTID_REF.URI (ID by reference and FITS file
URI columns), and GTID_POSURI (ID by position and
FITS file URI columns).

int fits_create_group(fitsfile *fptr, char *grpname,
int grouptype, int *status)

Create (insert) a grouping table just after the CHDU of the
current FITS file pointed to by fptr. All HDUs below the the
insertion point will be shifted downwards to make room for
the new HDU. The grpname parameter provides the group-
ing table name (GRPNAME keyword value) and may be set
to NULL if no group name is to be specified. The group-
type parameter specifies the desired structure of the group-
ing table and may take on the values: GT_ALL _URI (all
columns created), GID_REF (ID by reference columns),
GT_ID_POS (ID by position columns), GID_ALL (ID by
reference and position columns), GD_REF.URI (ID by
reference and FITS file URI columns), and @ POSURI

(ID by position and FITS file URI columns).

int fits_insert_group(fitsfile *fptr, char *grpname,
int grouptype, int *status)

3. Change the structure of an existing grouping table pdinte

to by gfptr. The grouptype parameter (see fiteategroup()

for valid parameter values) specifies the new structureef th
grouping table. This function only adds or removes group-
ing table columns, it does not add or delete group members
(i.e., table rows). If the grouping table already has thérdds
structure then no operations are performed and function sim
ply returns with a (0) success status code. If the requested
structure change creates new grouping table columns, then
the column values for all existing members will be filled with
the null values appropriate to the column type.

int fits_change_group(fitsfile *gfptr, int grouptype, i

Remove the group defined by the grouping table pointed to
by gfptr, and optionally all the group member HDUs. The
rmopt parameter specifies the action to be taken for all mem-
bers of the group defined by the grouping table. Valid val-
ues are: OPIRM_GPT (delete only the grouping table) and
OPT_RM_ALL (recursively delete all HDUs that belong to
the group). Any groups containing the grouping table gfptr
as a member are updated, and if rmept OPT.RM_GPT

all members have their GRPIDn and GRPLCn keywords up-

tions in recursive mode as poorly defined groups could cause dated accordingly. If rmopt= OPT.RM_ALL, then other

unpredictable results. The problem of a grouping tablectlire
or indirectly referencing itself (thus creating an infinib®p) is

protected against; in fact, neither function will attemptcbpy

or delete an HDU twice.

44

groups that contain the deleted members of gfptr are updated
to reflect the deletion accordingly.

int fits_remove_group(fitsfile *gfptr, int rmopt, int *

5. Copy (append) the group defined by the grouping table

pointed to by infptr, and optionally all group member HDUSs,
to the FITS file pointed to by outfptr. The cpopt parame-
ter specifies the action to be taken for all members of the
group infptr. Valid values are: OPGCP.GPT (copy only
the grouping table) and ORPGCPALL (recursively copy
ALL the HDUs that belong to the group defined by inf-
ptr). If the cpopt== OPT_.GCP.GPT then the members
of infptr have their GRPIDn and GRPLCn keywords up-
dated to reflect the existence of the new grouping table outf-
ptr, since they now belong to the new group. If cpept
OPT_GCPALL then the new grouping table outfptr only
contains pointers to the copied member HDUs and not the
original member HDUs of infptr. Note that, when cpept
OPT_GCPALL, all members of the group defined by inf-
ptr will be copied to a single FITS file pointed to by outfptr
regardless of their file distribution in the original group.

readonly. A pointer to the opened grouping table HDU is re-
turned in gfptr.

Note that it is possible, although unlikely and undesir-
able, for the GRPID/GRPLCn keywords in a member
HDU header to be non-continuous, e.g., GRPID1, GRPID2,
GRPID5, GRPID6. In such cases, the grpid index value spec-
ified in the function call shall identify the (grpid)th GRPID
value. In the above example, if grpig= 3, then the group
specified by GRPID5 would be opened.

int fits_open_group(fitsfile *mfptr, int group,
fitsfile **gfptr, int *status)

10. Add a member HDU to an existing grouping table pointed to

by gfptr. The member HDU may either be pointed to mfptr
(which must be positioned to the member HDU) or, if mf-
ptr == NULL, identified by the hdupos parameter (the HDU
position number, Primary array= 1) if both the grouping

int fits_copy_group(fitsfile *infptr, fitsfile *outtlle,and the member HDU reside in the same FITS file.

int cpopt, int *status)

. Merge the two groups defined by the grouping table HDUs
infptr and outfptr by combining their members into a single
grouping table. All member HDUs (rows) are copied from
infptr to outfptr. If mgopt== OPT_-MRG_COPY then inf-

ptr continues to exist unaltered after the merge. If the mgop
== OPT_.MRG_MOQV then infptr is deleted after the merge.
In both cases, the GRPIDn and GRPLCnh keywords of the
member HDUs are updated accordingly.

int fits_merge_groups(fitsfile *infptr, fitsfile %b

int mgopt, int *status)

. "Compact” the group defined by grouping table pointed
to by gfptr. The compaction is achieved by merging (via
fits_mergegroups()) all direct member HDUs of gfptr that
are themselves grouping tables. The cmopt parameter defi
whether the merged grouping table HDUs remain after merg-
ing (cmopt== OPT_.CMT_MBR) or if they are deleted after
merging (cmopt= OPT.CMT_MBR_DEL). If the grouping

table contains no direct member HDUs that are themselves

grouping tables then this function does nothing. Note that
this function is not recursive, i.e., only the direct member
HDUs of gfptr are considered for merging.

int fits_compact_group(fitsfile *gfptr, int cmopt,

. Verify the integrity of the grouping table pointed to by gf

The new member HDU shall have the appropriate GRPIDn
and GRPLCn keywords created in its header. Note that if the
member HDU is already a member of the group then it will
not be added a second time.

int fits_add_group_member(fitsfile *gfptr, fitsfile *mf

int hdupos, int *status)

17.8.2. Group Member Routines

Rf?u n the number of member HDUs in a grouping table gf-
B .“The number member HDUs is just the NAXIS2 value
(number of rows) of the grouping table.

int fits_get_num_members(fitsfile *gfptr, long *nmember

int *status)

SReturn the number of groups to which the HDU pointed

to by mfptr is linked, as defined by the number of
GRPIDnNGRPLCnh keyword records that appear in its header.
Note that each time this function is called, the indices ef th
GRPIDnGRPLCnh keywords are checked to make sure they
are continuous (ie no gaps) and are re-enumerated to elimi-
nate gaps if found.

int fi{gtggj_num_groups(fitsfile *mfptr, long *nmembers

int *status)

ptr to make sure that all group members are accessible add Open a member of the grouping table pointed to by gfptr.

that all links to other grouping tables are valid. The firidiz
parameter returns the member ID (row number) of the first
member HDU to fail verification (if positive value) or the
first group link to fail (if negative value). If gfptr is sucss-
fully verified then firstfailed contains a return value of 0.

The member to open is identified by its row number within
the grouping table as given by the parameter 'member’ (first
member== 1) . A fitsfile pointer to the opened member
HDU is returned as mfptr. Note that if the member HDU
resides in a FITS file dierent from the grouping table HDU
then the member file is first opened readwrite and, failing

int fits_verify_group(fitsfile *gfptr, long *firstfthidedpeined readanly)

. Open a grouping table that contains the member HDU int fits_open_member(fitsfile *gfptr, long member,
pointed to by mfptr. The grouping table to open is defined by fitsfile **mfptr, int *status)
the grpid parameter, which contains the keyword index value

of the GRPIDIAGRPLCn keyword(s) that link the member4. Copy (append) a member HDU of the grouping table pointed
HDU mfptr to the grouping table. If the grouping table re- to by gfptr. The member HDU is identified by its row number
sides in a file other than the member HDUs file then an at- within the grouping table as given by the parameter 'mem-
tempt is first made to open the file readwrite, and failing that ber’ (first member== 1). The copy of the group member

45

46

HDU will be appended to the FITS file pointed to by mf-17.9. References

ptr, and upon return mfptr shall point to the copied mem-

ber HDU. The cpopt parameter may take on the followserners-Lee, Tim, 1994. “world Wide Web
ing values: OPIMCP_ADD which adds a new entry in gf- |njtiative’, CERN - European Particle Physics Lab.
ptr for the copied member HDU, OPMICP_NADD which httpy/info.cern.clihypertextWWW /TheProject.html .

does not add an entry in gfptr for the copied member, and

OPT_MCP-REPL which replaces the original member entriotton, W. D., Tody, D. and Pence W., 1994. “Binary Table
with the copied member entry. Extension to FITS: A Proposal”, version dated June 13, 1994.

int fits_copy_member(fitsfile *gfptr, fitsfile «faospal, P., Ha_lrten, R. H._, Greisen, E. W and Wells, D. C,,
by (1ong membef, pint cpopt, > 1*9@% ralized extensions and blocking factors fordIT

stronomy and Astrophysics Suppl., 73, 359-364.

. Transfer a group member HDU from the grouping tablﬁarten, R. H., Grosbgl. P.,, Greisen, E. W.,, and Wells,

pointed to by infptr to the grouping table pointed to by outfy “ "1988. “The FITS tables extension”, Astronomy and
ptr. The member HDU to transfer is identified by its rOWAstror,)hysics Suppl., 73, 365-372. '

number within infptr as specified by the parameter 'mem-

ber’ (first member== 1). If tfopt == OPT_.MCP_ADD then Ponz, J. D., Thompson, R. W., and Munoz, J. R., 1994. “FITS
the member HDU is made a member of outfptr and remaiimage Extension” , Astronomy and Astrophysics Suppl., vol
a member of infptr. If tfopt== OPT_MCP_MOQV then the 105, pp 53-55.

member HDU is deleted from infptr after the transfer to outf-

ptr.

int fits_transfer_member(fitsfile *infptr, fitsfile *outfptr,
long member, int tfopt, int *status)

. Remove a member HDU from the grouping table pointed to

by gfptr. The member HDU to be deleted is identified by
its row number in the grouping table as specified by the pa-
rameter ‘'member’ (first membet= 1). The rmopt param-
eter may take on the following values: ORRM_ENTRY
which removes the member HDU entry from the grouping ta-
ble and updates the member's GRPIGRPLCn keywords,
and OPTRM_MBR which removes the member HDU entry
from the grouping table and deletes the member HDU itself.

int fits_remove_member(fitsfile *fptr, long member,
int rmopt, int *status)

	The Substring Array Convention for Binary Tables
	Preface
	Convention Definition
	Usage Notes

	Spatial Region File Convention
	The SIP Convention for Representing Distortion in FITS Image Headers
	Preface
	Introduction
	Definitions of the Distortion Keywords
	Example: Spitzer-IRAC Channel 4
	Software that Reads and Applies the Coefficients
	SIP for Hubble
	Issues and Caveats
	Possible New Features
	Concluding Remarks
	Acknowledgments
	References

	A Convention for preallocating header space for FITS keywords
	Preface
	Background
	Convention details

	TNX World Coordinate System
	Preface

	TPV World Coordinate System
	Preface

	ZPX World Coordinate System
	Preface

	The FITS Green Bank Keyword Convention
	Preface
	Original Green Bank Keyword Convention
	Generalized Green Bank Keyword Convention

	The ESO HIERARCH Keyword Convention
	Preface
	Convention Description

	The CONTINUE Long String Keyword Convention
	Preface
	Introduction
	Detailed Syntax of the Convention
	LONGSTR Keyword

	Keywords for Describing the Minimum and Maximum Values in Columns of FITS Tables
	Preface
	Keyword Definitions
	Examples

	FITS Header Inheritance Convention
	Preface
	INTRODUCTION
	IMPLEMENTATION DETAILS
	PRACTICAL CONSIDERATIONS
	REFERENCES

	FITS Foreign File Encapsulation Convention
	Preface
	Introduction
	 FOREIGN File Extension
	File Group (FG) Keywords
	Examples
	Implementation Notes

	Checksum Convention
	Preface
	Introduction
	DATASUM Keyword
	CHECKSUM Keyword
	CHECKSUM Keyword Implementation Guidelines
	Overview
	Recommended CHECKSUM Keyword Implementation
	Recommended ASCII Encoding Algorithm
	Encoding Example
	Incremental Updating of the Checksum
	Alternate Checksum Algorithms
	Digital Signatures
	Fletcher's Checksum
	Error Correcting Algorithms
	Example C Code for Accumulating the Checksum
	Example C Code for ASCII Encoding
	Acknowledgments
	References

	Tiled Image Compression Convention
	Preface
	General Description
	Keywords
	Columns
	Quantization of Floating-Point Data
	Dithering Algorithms
	ZQUANTIZ= 'NO_DITHER'
	ZQUANTIZ= 'SUBTRACTIVE_DITHER_1'
	ZQUANTIZ= 'SUBTRACTIVE_DITHER_2'

	Preserving undefined pixels with lossy compression
	Currently Implemented Compression Algorithms
	Rice compression algorithm
	GZIP compression algorithm
	IRAF PLIO compression algorithm
	H-Compress algorithm

	Random Number Generator

	Tiled Table Compression Convention
	Preface
	Overview
	Compression Overview
	Compression Directive Keywords
	Keywords in the Compressed Table
	Supported Compression Algorithms
	GZIP_1
	GZIP_2
	RICE_1

	Compressing Variable-Length Array Columns

	A Hierarchical Grouping Convention
	Preface
	Introduction
	Group Tables
	Group Member Identification Methods
	Group Table Keywords
	Group Table Columns

	Keywords for Group Member Extensions
	Example Group Table Headers
	Acknowledgments
	Appendix I. Reference Strings
	Appendix II. Application Program Interface
	Grouping Table Routines
	Group Member Routines

	References

