
NOST

Definition of the Flexible Image Transport System (FITS)

March 29, 1999

Standard

NOST 100-2.0

NASA/Science Office of Standards and Technology
Code 633.2
NASA Goddard Space Flight Center
Greenbelt MD 20771
USA

The NASA/Science Office of Standards and Technology (NOST) of the National
Space Science Data Center (NSSDC) of the National Aeronautics and Space Adminis-
tration (NASA) has been established to serve the space science communities in evolving
cost effective, interoperable data systems. The NOST performs a number of functions
designed to facilitate the recognition, development, adoption, and use of standards by
the space science communities.

Approval of a NOST standard requires verification by the NOST that the following
requirements have been met: consensus of the Technical Panel, proper adjudication
of the comments received from the targeted space and Earth science community, and
conformance to the accreditation process.

A NOST standard represents the consensus of the Technical Panel convened by the
NOST. Consensus is established when the NOST Accreditation Panel determines that
substantial agreement has been reached by the Technical Panel. However, consensus
does not necessarily imply that all members were in full agreement with every item in
the standard. NOST standards are not binding as published; however, they may serve
as a basis for mandatory standards when adopted by NASA or other organizations.

A NOST standard may be revised at any time, depending on developments in the
areas covered by the standard. Also, within five years from the date of its issuance, this
standard will be reviewed by the NOST to determine whether it should 1) remain in
effect without change, 2) be changed to reflect the impact of new technologies or new
requirements, or 3) be retired or canceled.

The Technical Panel that developed this version of the standard consisted of the
following members:

Robert J. Hanisch, Chair Space Telescope Science Institute
William D. Pence, Secretary NASA Goddard Space Flight Center
Barry M. Schlesinger, Past Secretary Raytheon STX
Allen Farris Space Telescope Science Institute
Eric W. Greisen National Radio Astronomy Observatory
Peter J. Teuben University of Maryland
Randall W. Thompson Computer Sciences Corporation
Archibald Warnock A/WWW Enterprises

Members of the previous Technical Panels also included:
Lee E. Brotzman Hughes STX
Edward Kemper Hughes STX
Michael E. Van Steenberg NASA Goddard Space Flight Center
Wayne H. Warren Jr. Hughes STX
Richard A. White NASA Goddard Space Flight Center

ii

This standard is published and maintained by the NOST. Send comments and
orders for NOST documents to:

NOST, Code 633.2, NASA Goddard Space Flight Center
Greenbelt MD 20771
USA
electronic mail: nost@nssdca.gsfc.nasa.gov
+1-301-286-3575
http://ssdoo.gsfc.nasa.gov/nost/

Other information about FITS can be obtained from the FITS Support Office. The
FITS Support Office can be contacted as follows:

FITS Support Office
Code 631, NASA Goddard Space Flight Center
Greenbelt MD 20771
USA
electronic mail: fits@fits.gsfc.nasa.gov
+1-301-286-6695
http://fits.gsfc.nasa.gov/

NASA/Science Office of Standards and Technology

CONTENTS iii

Contents

Introduction vii

1 Overview 1
1.1 Purpose . 1
1.2 Scope . 1
1.3 Applicability . 2
1.4 Organization of This Document . 2

2 References 5

3 Definitions, Acronyms, and Symbols 7

4 FITS File Organization 11
4.1 Overall . 11
4.2 Individual FITS Structures . 11
4.3 Primary Header and Data Array . 11

4.3.1 Primary Header . 12
4.3.2 Primary Data Array . 12

4.4 Extensions . 12
4.4.1 Requirements for Conforming Extensions 12
4.4.2 Standard Extensions . 13
4.4.3 Order of Extensions . 13

4.5 Special Records . 14
4.6 Physical Blocking . 14

4.6.1 Bitstream Devices . 14
4.6.2 Sequential Media . 14

5 Headers 15
5.1 Card Images . 15

5.1.1 Syntax . 15
5.1.2 Components . 15

NOST FITS Definition

iv CONTENTS

5.2 Value . 16
5.2.1 Character String . 16
5.2.2 Logical . 17
5.2.3 Integer Number . 17
5.2.4 Real Floating Point Number . 17
5.2.5 Complex Integer Number . 18
5.2.6 Complex Floating Point Number 18

5.3 Units . 18
5.4 Keywords . 18

5.4.1 Mandatory Keywords . 18
5.4.2 Other Reserved Keywords . 21
5.4.3 Additional Keywords . 26

6 Data Representation 29
6.1 Characters . 29
6.2 Integers . 29

6.2.1 Eight-bit . 29
6.2.2 Sixteen-bit . 29
6.2.3 Thirty-two-bit . 29
6.2.4 Unsigned Integers . 30

6.3 IEEE-754 Floating Point . 30

7 Random Groups Structure 31
7.1 Keywords . 31

7.1.1 Mandatory Keywords . 31
7.1.2 Reserved Keywords . 33

7.2 Data Sequence . 34
7.3 Data Representation . 34

8 Standard Extensions 35
8.1 The ASCII Table Extension . 35

8.1.1 Mandatory Keywords . 35
8.1.2 Other Reserved Keywords . 37
8.1.3 Data Sequence . 38
8.1.4 Fields . 38
8.1.5 Entries . 38

8.2 Image Extension . 40
8.2.1 Mandatory Keywords . 40
8.2.2 Units . 41
8.2.3 Data Sequence . 41

8.3 Binary Table Extension . 41

NASA/Science Office of Standards and Technology

CONTENTS v

8.3.1 Mandatory Keywords . 41
8.3.2 Other Reserved Keywords . 44
8.3.3 Data Sequence . 46
8.3.4 Data Display . 48

9 Restrictions on Changes 51

Appendixes

A Formal Syntax of Card Images 53

B Proposed Binary Table Conventions 57
B.1 “Variable Length Array” Facility . 57
B.2 “Multidimensional Array” Convention 60
B.3 “Substring Array” Convention . 61

C Implementation on Physical Media 65
C.1 Physical Properties of Media . 65
C.2 Labeling . 65

C.2.1 Tape . 65
C.2.2 Other Media . 65

C.3 FITS File Boundaries . 65
C.3.1 Magnetic Reel Tape . 65
C.3.2 Other Media . 66

C.4 Multiple Physical Volumes . 66

D Suggested Time Scale Specification 67

E Differences from IAU-endorsed Publications 71

F Summary of Keywords 79

G ASCII Text 81

H IEEE Floating Point Formats 83
H.1 Basic Formats . 83

H.1.1 Single . 83
H.1.2 Double . 84

H.2 Byte Patterns . 85

I Reserved Extension Type Names 87

NOST FITS Definition

vi List of Figures

J NOST Publications 91

List of Tables

5.1 Mandatory keywords for primary header. 19
5.2 Interpretation of valid BITPIX value. 20
5.3 Mandatory keywords in conforming extensions. 20

7.1 Mandatory keywords in primary header preceding random groups. . . . 32

8.1 Mandatory keywords in ASCII table extensions. 36
8.2 Valid TFORMn format values in TABLE extensions. 37
8.3 Mandatory keywords in image extensions. 40
8.4 Mandatory keywords in binary table extensions. 42
8.5 Valid TFORMn data types in BINTABLE extensions. 43
8.6 Valid TDISPn format values in BINTABLE extensions 45

F.1 Mandatory FITS keywords . 79
F.2 Reserved FITS keywords . 80
F.3 General Reserved FITS keywords . 80

G.1 ASCII character set . 82

H.1 Summary of Format Parameters . 84
H.2 IEEE Floating Point Formats . 86

I.1 Reserved Extension Type Names . 88
I.2 Status Codes . 89
I.3 Acronyms in List of Registered Extensions 89

J.1 NOST Publications . 91

List of Figures

4.1 Array data sequence . 13

H.1 Single Format. 84
H.2 Double Format. 85

NASA/Science Office of Standards and Technology

vii

Introduction

The Flexible Image Transport System (FITS) evolved out of the recognition that a
standard format was needed for transferring astronomical data from one installation to
another. The original form, or Basic FITS [1], was designed for the transfer of images
and consisted of a binary array, usually multidimensional, preceded by an ASCII text
header with information describing the organization and contents of the array. The FITS
concept was later expanded to accommodate more complex data formats. A new format
for image transfer, random groups, was defined [2] in which the data would consist of a
series of arrays, with each array accompanied by a set of associated parameters. These
formats were formally endorsed [3] by the International Astronomical Union (IAU) in
1982. Provisions for data structures other than simple arrays or groups were made later.
These structures appear in extensions, each consisting of an ASCII header followed
by the data whose organization it describes. A set of general rules governing such
extensions [4] and a particular extension, ASCII table [5], were endorsed by the IAU
General Assembly [6] in 1988. At the same General Assembly, an IAU FITS Working
Group (IAUFWG) was formed [7] under IAU Commission 5 (Astronomical Data) with
the mandate to maintain the existing FITS standards and to review, approve, and
maintain future extensions to FITS, recommended practices for FITS, implementations,
and the thesaurus of approved FITS keywords. In 1989, the IAUFWG approved a
formal agreement [8] for the representation of floating point numbers. In 1994, the
IAUFWG endorsed two additional extensions, the image extension [9] and the binary
table extension [10]. FITS was originally designed and defined for 9-track half-inch
magnetic tape. However, as improvements in technology have brought forward other
data storage and data distribution media, it has generally been agreed that the FITS
format is to be understood as a logical format and not defined in terms of the physical
characteristics of any particular data storage medium. In 1994, the IAUFWG adopted
a set of rules [11] governing the relation between the FITS logical record size and
the physical block size for sequential media and bitstream devices. The IAUFWG also
approved in 1997 an agreement [12] defining a new format for encoding the date and time
in the DATE, DATE-OBS, and other related DATExxxx keywords to correct the ambiguity
in the original DATE keyword format beginning in the year 2000.

NOST FITS Definition

viii

NASA/Science Office of Standards and Technology

1

Section 1

Overview

An archival format must be utterly portable and self-describing, on the as-
sumption that, apart from the transcription device, neither the software nor
the hardware that wrote the data will be available when the data are read.
“Preserving Scientific Data on our Physical Universe,” p. 60. Steering Com-
mittee for the Study on the Long-Term Retention of Selected Scientific and
Technical Records of the Federal Government, [US] National Research Coun-
cil, National Academy Press 1995.

1.1 Purpose

This standard formally defines the FITS format for data structuring and exchange that
is to be used where applicable as defined in §1.3. It is intended as a formal codification
of the FITS format that has been endorsed by the IAU for transfer of astronomical
data, fully consistent with all actions and endorsements of the IAU and the IAU FITS
Working Group (IAUFWG). Minor ambiguities and inconsistencies in FITS as described
in the original papers are eliminated.

1.2 Scope

This standard specifies the organization and content of FITS data sets, including the
header and data, for all standard FITS formats: Basic FITS, the random groups struc-
ture, the ASCII table extension, the image extension, and the binary table extension. It
also specifies minimum structural requirements for new extensions and general princi-
ples governing the creation of new extensions. It specifies the relation between physical
block sizes and logical records for FITS files on bitstream devices and sequential media.
For headers, it specifies the proper syntax for card images and defines required and
reserved keywords. For data, it specifies character and value representations and the

NOST FITS Definition

2 SECTION 1. OVERVIEW

ordering of contents within the byte stream. It defines the general rules to which new
extensions are required to conform.

1.3 Applicability

This standard describes an extensible data interchange format particularly well suited
for transport and archiving of arrays and tables of astronomical data. The IAU has
recommended that all astronomical computer facilities support FITS for the interchange
of binary data. It has been NASA policy for its astrophysics projects to make their data
available in FITS format. This standard may also be used to define the format for data
transport in other disciplines, as may be determined by the appropriate authorities.

1.4 Organization of This Document

§3 is a glossary of definitions, acronyms, and symbols. In §4, this document describes the
overall organization of a FITS file, the contents of the first (primary) header and data,
the rules for creating new FITS extensions, and the relation between physical block
sizes and logical records for FITS files on bitstream devices and sequential media. The
next two sections provide additional details on the header and data, with a particular
focus on the primary header. §5 provides details about header card image syntax and
specifies those keywords required and reserved in a primary header. §6 describes how
different data types are represented in FITS. The following sections describe the headers
and data of two standard FITS structures, the now deprecated random groups records
(§7) and the current standard extensions: ASCII table, image, and binary table (§8).
Throughout the document, deprecation of structures or syntax is noted where relevant.
Files containing deprecated features are valid FITS, but these features should not be
used in new files; the old files using them remain standard because of the principle that
no change in FITS shall cause a valid FITS file to become invalid.

The Appendixes contain material that is not part of the standard. The first, Ap-
pendix A, provides a formal expression of the keyword/value syntax for header card
images described in §5.2. Appendix B provides examples of widely accepted FITS con-
ventions that are not part of the formal FITS standard. It describes three conventions in
use with the binary table extension — one for handling multidimensional arrays, one for
including variable length arrays, and one for arrays of substrings. Appendix C describes
aspects of the implementation of FITS on physical media not covered by the blocking
agreement. Appendix D is the appendix to the agreement endorsed by the IAUFWG
for a new format for keywords expressing dates. The new format uses a four-digit value
for the year, and thus eliminates any ambiguity in dates from the year 2000 and after.
This appendix is not part of the formal agreement. It contains a detailed discussion
of time systems. It has been slightly reformatted for stylistic compatibility with the

NASA/Science Office of Standards and Technology

1.4. ORGANIZATION OF THIS DOCUMENT 3

remainder of this document. Appendix E lists the differences between this standard
and the specifications of prior publications; it also identifies those ambiguities in the
documents endorsed by the IAU on which this standard provides specific rules. The
next four appendixes provide reference information: a tabular summary of the FITS
keywords (Appendix F), a list of the ASCII character set and a subset designated ASCII
text (Appendix G), a description of the IEEE floating point format (Appendix H), and
a list of the extension type names that have been reserved as of the date this document
was issued (Appendix I). Appendix J is a list of NOST documents, including earlier
versions of this standard.

NOST FITS Definition

4 SECTION 1. OVERVIEW

NASA/Science Office of Standards and Technology

5

Section 2

References

1. Wells, D. C., Greisen, E. W., and Harten, R. H. 1981, “FITS : A Flexible Image
Transport System,” Astron. Astrophys. Suppl., 44, 363–370.

2. Greisen, E. W. and Harten, R. H. 1981, “An Extension of FITS for Small Arrays
of Data,” Astron. Astrophys. Suppl., 44, 371–374.

3. IAU. 1983, Information Bulletin No. 49.

4. Grosbøl, P., Harten, R. H., Greisen, E. W., and Wells, D. C. 1988, “Generalized
Extensions and Blocking Factors for FITS,” Astron. Astrophys. Suppl., 73, 359–
364.

5. Harten, R. H., Grosbøl, P., Greisen, E. W., and Wells, D. C. 1988, “The FITS
Tables Extension,” Astron. Astrophys. Suppl., 73, 365–372.

6. IAU. 1988, Information Bulletin No. 61.

7. McNally, D., ed. 1988, Transactions of the IAU, Proceedings of the Twentieth
General Assembly (Dordrecht: Kluwer).

8. Wells, D. C. and Grosbøl, P. 1990, “Floating Point Agreement for FITS,” (avail-
able electronically from ftp://nssdc.gsfc.nasa.gov/pub/fits/fp agree.ps).

9. Ponz, J. D., Thompson, R. W., and Muñoz, J. R. 1994, “The FITS Image Exten-
sion,” Astron. Astrophys. Suppl., 105, 53–55.

10. Cotton, W. D., Tody, D. B., and Pence, W. D. 1995, “Binary Table Extension to
FITS,” Astron. Astrophys. Suppl., 113, 159–166.

11. Grosbøl, P. and Wells, D. C. 1994, “Blocking of Fixed-block Sequential Media
and Bitstream Devices,” (available electronically from FITS Support Office at
ftp://nssdc.gsfc.nasa.gov/pub/fits/blocking94.txt).

NOST FITS Definition

6 SECTION 2. REFERENCES

12. Bunclark, P. and Rots, A. 1997, “Precise re-definition of DATE-OBS Keyword
encompassing the millennium,” (available electronically from
ftp://nssdc.gsfc.nasa.gov/pub/fits/year2000 agreement.txt).

13. ANSI. 1978, “American National Standard for Information Processing: Program-
ming Language FORTRAN,” ANSI X3.9–1978 (ISO 1539) (New York: American
National Standards Institute, Inc.).

14. ANSI. 1977, “American National Standard for Information Processing: Code for
Information Interchange,” ANSI X3.4–1977 (ISO 646) (New York: American Na-
tional Standards Institute, Inc.).

15. IEEE. 1985, “American National Standard — IEEE Standard for Binary Float-
ing Point Arithmetic”. ANSI/IEEE 754–1985 (New York: American National
Standards Institute, Inc.).

16. Jennings, D. G., Pence, W. D., Folk, M., and Schlesinger, B. M, 1997, “A Hierar-
chical Grouping Convention for FITS,” preprint, available electronically from
http://fits.gsfc.nasa.gov/group.html .

17. “Going AIPS,” 1990, National Radio Astronomy Observatory, Charlottesville, VA.

18. Muñoz, J. R. “IUE data in FITS Format,” 1989, ESA IUE Newsletter, 32, 12–45.

NASA/Science Office of Standards and Technology

7

Section 3

Definitions, Acronyms, and
Symbols

 Used to designate an ASCII blank.

ANSI American National Standards Institute.

Array A sequence of data values. This sequence corresponds to the elements in a
rectilinear, n-dimension matrix (0 ≤ n ≤ 999).

Array value The value of an element of an array in a FITS file, without the application
of the associated linear transformation to derive the physical value.

ASCII American National Standard Code for Information Interchange.

ASCII blank The ASCII character for blank which is represented by hexadecimal 20
(decimal 32).

ASCII character Any member of the 7-bit ASCII character set.

ASCII NULL Hexadecimal 00.

ASCII text ASCII characters hexadecimal 20–7E.

Basic FITS The FITS structure consisting of the primary header followed by a single
primary data array.

Bit A single binary digit.

Byte An ordered sequence of eight consecutive bits treated as a single entity.

Card image A sequence of 80 bytes containing ASCII text, treated as a logical entity.

NOST FITS Definition

8 SECTION 3. DEFINITIONS, ACRONYMS, AND SYMBOLS

Conforming extension An extension whose keywords and organization adhere to the
requirements for conforming extensions defined in §4.4.1 of this standard.

DAT 4mm Digital Audio Tape.

Deprecated This term is used to refer to obsolete structures that should not be used
for new applications but remain valid.

Entry A single value in a table.

Extension A FITS HDU appearing after the primary HDU in a FITS file.

Extension name The identifier used to distinguish a particular extension HDU from
others of the same type, appearing as the value of the EXTNAME keyword.

Extension type An extension format.

Field A set of zero or more table entries collectively described by a single format.

File A sequence of one or more records terminated by an end-of-file indicator appro-
priate to the medium.

FITS Flexible Image Transport System.

FITS file A file with a format that conforms to the specifications in this document.

FITS structure One of the components of a FITS file: the primary HDU, the random
groups records, an extension, or, collectively, the special records following the last
extension.

Floating point A computer representation of a real number.

Fraction The field of the mantissa (or significand) of a floating point number that lies
to the right of its implied binary point.

Group parameter value The value of one of the parameters preceding a group in
the random groups structure, without the application of the associated linear
transformation.

GSFC Goddard Space Flight Center.

HDU Header and Data Unit. A data structure consisting of a header and the data
the header describes. Note that an HDU may consist entirely of a header with no
data records.

Header A series of card images organized within one or more FITS logical records
that describes structures and/or data which follow it in the FITS file.

NASA/Science Office of Standards and Technology

9

Heap A supplemental data area, currently defined to follow the table in a binary table
extension.

IAU International Astronomical Union.

IAUFWG International Astronomical Union FITS Working Group.

IUE International Ultraviolet Explorer.

IEEE Institute of Electrical and Electronic Engineers.

IEEE NaN IEEE Not-a-Number value.

IEEE special values Floating point number byte patterns that have a special, re-
served meaning, such as −0, ±∞, ±underflow, ±overflow, ±denormalized, ± NaN.
(See Appendix H).

Indexed keyword A keyword that is of the form of a fixed root with an appended
positive integer count.

Keyword The first eight bytes of a header card image.

Logical record A record comprising 2880 8-bit bytes.

Mandatory keyword A keyword that must be used in all FITS files or a keyword
required in conjunction with particular FITS structures.

Mantissa Also known as significand. The component of an IEEE floating point number
consisting of an explicit or implicit leading bit to the left of its implied binary point
and a fraction field to the right.

Matrix A data array of two or more dimensions.

NOST NASA/Science Office of Standards and Technology.

Physical value The value in physical units represented by an element of an array and
possibly derived from the array value using the associated, but optional, linear
transformation.

Picture element A single location within an array.

Pixel Picture element.

Primary data array The data array contained in the primary HDU.

Primary HDU The first HDU in a FITS file.

NOST FITS Definition

10 SECTION 3. DEFINITIONS, ACRONYMS, AND SYMBOLS

Primary header The first header in a FITS file, containing information on the overall
contents of the file as well as on the primary data array.

Record A sequence of bits treated as a single logical entity.

Reference point The point along a given coordinate axis, given in units of pixel num-
ber, at which a value and increment are defined.

Repeat count The number of values represented in a binary table field.

Reserved keyword An optional keyword that may be used only in the manner defined
in this standard.

Special records A series of 23040-bit (2880 8-bit byte) records, following the primary
HDU, whose internal structure does not otherwise conform to that for the primary
HDU or to that specified for a conforming extension in this standard.

Standard extension A conforming extension whose header and data content are spec-
ified explicitly in this standard.

Type name The value of the XTENSION keyword, used to identify the type of the
extension in the data following.

Valid value A member of a data array or table corresponding to an actual physical
quantity.

NASA/Science Office of Standards and Technology

11

Section 4

FITS File Organization

4.1 Overall

A FITS file shall be composed of the following FITS structures, in the order listed:

• Primary HDU

• Conforming Extensions (optional)

• Other special records (optional)

Each FITS structure shall consist of an integral number of FITS logical records.
The primary HDU shall start with the first record of the FITS file. The first record
of each subsequent FITS structure shall be the record immediately following the last
record of the preceding FITS structure. The size of a FITS logical record shall be 23040
bits, corresponding to 2880 8-bit bytes.

4.2 Individual FITS Structures

The primary HDU and every extension HDU shall consist of an integral number of
header records consisting of ASCII text, which may be followed by an integral number
of data records. The first record of data shall be the record immediately following the
last record of the header.

4.3 Primary Header and Data Array

The first component of a FITS file shall be the primary header. The primary header
may, but need not be, followed by a primary data array. The presence or absence of a
primary data array shall be indicated by the values of the NAXIS or NAXISn keywords
in the primary header (§5.4.1.1).

NOST FITS Definition

12 SECTION 4. FITS FILE ORGANIZATION

4.3.1 Primary Header

The header of a primary HDU shall consist of a series of card images in ASCII text. All
header records shall consist of 36 card images. Card images without information shall
be filled with ASCII blanks (hexadecimal 20).

4.3.2 Primary Data Array

In FITS format, the primary data array shall consist of a single data array of 0–999 di-
mensions. The random groups convention in the primary data array is a more compli-
cated structure (see §7). The data values shall be a byte stream with no embedded fill
or blank space. The first value shall be in the first position of the first primary data
array record. The first value of each subsequent row of the array shall be in the position
immediately following the last value of the previous row. Arrays of more than one di-
mension shall consist of a sequence such that the index along axis 1 varies most rapidly,
that along axis 2 next most rapidly, and those along subsequent axes progressively less
rapidly, with that along axis m, where m is the value of NAXIS, varying least rapidly; i.e.,
the elements of an array A(x1, x2, . . . , xm) shall be in the order shown in Figure 4.1.
The index count along each axis shall begin with 1 and increment by 1 up to the value
of the NAXISn keyword (§5.4.1.1).

If the data array does not fill the final record, the remainder of the record shall be
filled by setting all bits to zero.

4.4 Extensions

4.4.1 Requirements for Conforming Extensions

All extensions, whether or not further described in this standard, shall fulfill the follow-
ing requirements to be in conformance with this FITS standard.

4.4.1.1 Identity

Each extension type shall have a unique type name, specified in the header according
to the syntax codified in §5.4.1.2. To preclude conflict, extension type names must be
registered with the IAUFWG. The FITS Support Office shall maintain and provide a
list of the registered extensions.

4.4.1.2 Size Specification

The total number of bits in the data of each extension shall be specified in the header
for that extension, in the manner prescribed in §5.4.1.2.

NASA/Science Office of Standards and Technology

4.4. EXTENSIONS 13

A(1, 1, . . . , 1),
A(2, 1, . . . , 1),

...,
A(NAXIS1, 1, . . . , 1),
A(1, 2, . . . , 1),
A(2, 2, . . . , 1),

...,
A(NAXIS1, 2, . . . , 1),

...,
A(1, NAXIS2, . . . , NAXISm),

...,
A(NAXIS1, NAXIS2, . . . , NAXISm)

Figure 4.1: Arrays of more than one dimension shall consist of a sequence such that the
index along axis 1 varies most rapidly and those along subsequent axes progressively
less rapidly. Except for the location of the first element, array structure is independent
of record structure.

4.4.1.3 Compatibility with Existing FITS Files

No extension shall be constructed that invalidates existing FITS files.

4.4.2 Standard Extensions

A standard extension shall be a conforming extension whose organization and content
are completely specified in this standard. Only one FITS format shall be approved for
each type of data organization. Each standard extension shall have a unique name given
by the value of the XTENSION keyword (see Appendix I)

4.4.3 Order of Extensions

An extension may follow the primary HDU or another conforming extension. Standard
extensions and other conforming extensions may appear in any order in a FITS file.

NOST FITS Definition

14 SECTION 4. FITS FILE ORGANIZATION

4.5 Special Records

The first 8 bytes of special records must not contain the string “XTENSION”. It is rec-
ommended that they not contain the string “SIMPLE ”. The records must have the
standard FITS 23040-bit record length. The contents of special records are not other-
wise specified by this standard.

4.6 Physical Blocking

4.6.1 Bitstream Devices

For bitstream devices, including but not restricted to logical file systems, FITS files
shall be written with fixed blocks of a physical block size equal to the 23040-bit FITS
logical record size.

4.6.2 Sequential Media

4.6.2.1 Fixed Block

For fixed block length sequential media, including but not restricted to optical disks
(accessed as a sequential set of records), QIC format 1/4-inch cartridge tapes, and local
area networks, FITS files shall be written as a bitstream, using the fixed block size of
the medium. If the end of the last logical record does not coincide with the end of a
physical fixed block, all bits in the remainder of the physical block containing the last
logical record shall be set to zero. After an end-of-file mark has been detected in the
course of reading a FITS file, subsequent incomplete FITS logical records should be
disregarded.

4.6.2.2 Variable Block

For variable block length sequential media, including but not restricted to 1/2-inch 9-
track tapes, DAT 4 mm cartridge tapes, and 8 mm cartridge tapes, FITS files may be
written with an integer blocking factor equal to 1–10 logical records per physical block.

NASA/Science Office of Standards and Technology

15

Section 5

Headers

5.1 Card Images

5.1.1 Syntax

Header card images shall consist of a keyword, a value indicator (optional unless a value
is present), a value (optional), and a comment (optional). Except where specifically
stated otherwise in this standard, keywords may appear in any order.

A formal syntax, giving a complete definition of the syntax of FITS card images,
is given in Appendix A. It is intended as an aid in interpreting the text defining the
standard.

5.1.2 Components

5.1.2.1 Keyword (bytes 1–8)

The keyword shall be a left justified, 8-character, blank-filled, ASCII string with no
embedded blanks. All digits (hexadecimal 30 to 39,“0123456789”) and upper case Latin
alphabetic characters (hexadecimal 41 to 5A, “ABCDEFG HIJKLMN OPQRST UVWXYZ”) are
permitted; no lower case characters shall be used. The underscore (hexadecimal 5F,
“ ”) and hyphen (hexadecimal 2D, “-”) are also permitted. No other characters are
permitted. For indexed keywords with a single index the counter shall not have leading
zeroes.

5.1.2.2 Value Indicator (bytes 9–10)

If this field contains the ASCII characters “= ”, it indicates the presence of a value field
associated with the keyword, unless it is a commentary keyword as defined in §5.4.2.4.
If the value indicator is not present or if it is a commentary keyword then columns 9–80
may contain any ASCII text.

NOST FITS Definition

16 SECTION 5. HEADERS

5.1.2.3 Value/Comment (bytes 11–80)

This field, when used, shall contain the value, if any, of the keyword, followed by optional
comments. The value field may be a null field; i.e., it may consist entirely of spaces. If
the value field is null, the value associated with the keyword is undefined. If a comment
is present, it must be preceded by a slash (hexadecimal 2F, “/”). A space between
the value and the slash is strongly recommended. The value shall be the ASCII text
representation of a string or constant, in the format specified in §5.2. The comment
may contain any ASCII text.

5.2 Value

The structure of the value field shall be determined by the type of the variable. The value
field represents a single value and not an array of values. The value field must be in one of
two formats: fixed or free. The fixed format is required for values of mandatory keywords
and recommended for values of all others. This standard imposes no requirements on
case sensitivity of character strings other than those explicitly specified.

5.2.1 Character String

If the value is a fixed format character string, column 11 shall contain a single quote
(hexadecimal code 27, “’”); the string shall follow, starting in column 12, followed by
a closing single quote (also hexadecimal code 27) that should not occur before column
20 and must occur in or before column 80. The character string shall be composed only
of ASCII text. A single quote is represented within a string as two successive single
quotes, e.g., O’HARA = ’O’’HARA’. Leading blanks are significant; trailing blanks are
not.

Free format character strings follow the same rules as fixed format character strings
except that the starting and closing single quote characters may occur anywhere within
columns 11–80. Any columns preceding the starting quote character and after column
10 must contain the space character.

Note that there is a subtle distinction between the following 3 keywords:

KEYWORD1= ’’ / null string keyword
KEYWORD2= ’ ’ / blank keyword
KEYWORD3= / undefined keyword

The value of KEYWORD1 is a null, or zero length string whereas the value of the
KEYWORD2 is a blank string (nominally a single blank character because the first blank
in the string is significant, but trailing blanks are not). The value of KEYWORD3 is
undefined and has an indeterminate datatype as well, except in cases where the data
type of the specified keyword is explicitly defined in this standard.

NASA/Science Office of Standards and Technology

5.2. VALUE 17

The maximum allowed length of a keyword string is 68 characters (with the opening
and closing quote characters in columns 11 and 80, respectively). In general, no length
limit less than 68 is implied for character-valued keywords.

5.2.2 Logical

If the value is a fixed format logical constant, it shall appear as a T or F in column 30.
A logical value is represented in free format by a single character consisting of T or
F. This character must be the first non-blank character in columns 11–80. The only
characters that may follow this single character are spaces, or a slash followed by an
optional comment (see §5.1.2.3).

5.2.3 Integer Number

If the value is a fixed format integer, the ASCII representation shall be right justified in
columns 11–30. An integer consists of a ‘+’ (hexadecimal 2B) or ‘−’ (hexadecimal 2D)
sign, followed by one or more ASCII digits (hexadecimal 30 to 39), with no embedded
spaces. The leading ‘+’ sign is optional. Leading zeros are permitted, but are not
significant. The integer representation described here is always interpreted as a signed,
decimal number.

A free format integer value follows the same rules as fixed format integers except
that it may occur anywhere within columns 11–80.

5.2.4 Real Floating Point Number

If the value is a fixed format real floating point number, the ASCII representation shall
appear, right justified, in columns 11–30.

A floating point number is represented by a decimal number followed by an optional
exponent, with no embedded spaces. A decimal number consists of a ‘+’ (hexadecimal
2B) or ‘-’ (hexadecimal 2D) sign, followed by a sequence of ASCII digits containing
a single decimal point (‘.’), representing an integer part and a fractional part of the
floating point number. The leading ‘+’ sign is optional. At least one of the integer
part or fractional part must be present. If the fractional part is present, the decimal
point must also be present. If only the integer part is present, the decimal point may
be omitted. The exponent, if present, consists of an exponent letter followed by an
integer. Letters in the exponential form (‘E’ or ‘D’) shall be upper case. Note: The full
precision of 64-bit values cannot be expressed over the whole range of values using the
fixed format.

A free format floating point value follows the same rules as fixed format floating
point values except that it may occur anywhere within columns 11–80.

NOST FITS Definition

18 SECTION 5. HEADERS

5.2.5 Complex Integer Number

There is no fixed format for complex integer numbers.
If the value is a complex integer number, the value must be represented as a real

part and an imaginary part, separated by a comma and enclosed in parentheses. Spaces
may precede and follow the real and imaginary parts. The real and imaginary parts
are represented as integers (§5.2.3). Such a representation is regarded as a single value
for the complex integer number. This representation may be located anywhere within
columns 11–80.

5.2.6 Complex Floating Point Number

There is no fixed format for complex floating point numbers.
If the value is a complex floating point number, the value must be represented as

a real part and an imaginary part, separated by a comma and enclosed in parentheses.
Spaces may precede and follow the real and imaginary parts. The real and imaginary
parts are represented as floating point values (§5.2.4). Such a representation is regarded
as a single value for the complex floating point number. This representation may be
located anywhere within columns 11–80.

5.3 Units

The units of all FITS header keyword values, with the exception of measurements
of angles, should conform with the recommendations in the IAU Style Manual [7].
For angular measurements given as floating point values and specified with reserved
keywords, degrees are the recommended units (with the units, if specified, given as
’deg’).

5.4 Keywords

5.4.1 Mandatory Keywords

Mandatory keywords are required in every HDU as described in the remainder of this
subsection. They may be used only as described in this standard. Values of the manda-
tory keywords must be written in fixed format.

5.4.1.1 Principal

The SIMPLE keyword is required to be the first keyword in the primary header of all
FITS files. Principal mandatory keywords other than SIMPLE are required in all FITS
headers. The card images of any primary header must contain the keywords shown in

NASA/Science Office of Standards and Technology

5.4. KEYWORDS 19

Table 5.1 in the order given. No other keywords may intervene between the SIMPLE
keyword and the last NAXISn keyword.

1 SIMPLE
2 BITPIX
3 NAXIS
4 NAXISn, n = 1, . . . , NAXIS

...
(other keywords)
...

last END

Table 5.1: Mandatory keywords for primary header.

The total number of bits in the primary data array, exclusive of fill that is needed
after the data to complete the last record (§4.3.2), is given by the following expression:

Nbits = |BITPIX| × (NAXIS1× NAXIS2× · · · × NAXISm), (5.1)

where Nbits is non-negative and the number of bits excluding fill, m is the value of NAXIS,
and BITPIX and the NAXISn represent the values associated with those keywords.

SIMPLE Keyword The value field shall contain a logical constant with the value T if
the file conforms to this standard. This keyword is mandatory for the primary header
and is not permitted in extension headers. A value of F signifies that the file does not
conform to this standard.

BITPIX Keyword The value field shall contain an integer. The absolute value is
used in computing the sizes of data structures. It shall specify the number of bits that
represent a data value. The only valid values of BITPIX are given in Table 5.2.

NAXIS Keyword The value field shall contain a non-negative integer no greater than
999, representing the number of axes in the associated data array. A value of zero
signifies that no data follow the header in the HDU.

NAXISn Keywords The value field of this indexed keyword shall contain a non-
negative integer, representing the number of elements along axis n of a data array.
The NAXISn must be present for all values n = 1,...,NAXIS, and for no other values

NOST FITS Definition

20 SECTION 5. HEADERS

Value Data Represented
8 Character or unsigned binary integer

16 16-bit twos-complement binary integer
32 32-bit twos-complement binary integer

-32 IEEE single precision floating point
-64 IEEE double precision floating point

Table 5.2: Interpretation of valid BITPIX value.

of n. A value of zero for any of the NAXISn signifies that no data follow the header in
the HDU. If NAXIS is equal to 0, there should not be any NAXISn keywords.

END Keyword This keyword has no associated value. Columns 9–80 shall be filled
with ASCII blanks.

5.4.1.2 Conforming Extensions

All conforming extensions must use the keywords defined in Table 5.3 in the order
specified. No other keywords may intervene between the XTENSION keyword and the last
NAXISn keyword. This organization is required for any conforming extension, whether
or not further specified in this standard.

1 XTENSION
2 BITPIX
3 NAXIS
4 NAXISn, n = 1, . . . , NAXIS

...
(other keywords, including . . .)
PCOUNT
GCOUNT
...

last END

Table 5.3: Mandatory keywords in conforming extensions.

The total number of bits in the extension data array exclusive of fill that is needed
after the data to complete the last record such as that for the primary data array (§4.3.2)

NASA/Science Office of Standards and Technology

5.4. KEYWORDS 21

is given by the following expression:

Nbits = |BITPIX| × GCOUNT×
(PCOUNT+ NAXIS1× NAXIS2× · · · × NAXISm), (5.2)

where Nbits is non-negative and the number of bits excluding fill, m is the value of NAXIS,
and BITPIX, GCOUNT, PCOUNT, and the NAXISn represent the values associated with those
keywords.

XTENSION Keyword The value field shall contain a character string giving the name
of the extension type. This keyword is mandatory for an extension header and must
not appear in the primary header. For an extension that is not a standard extension,
the type name must not be the same as that of a standard extension.

The IAUFWG may specify additional type names that must be used only to identify
specific types of extensions; the full list shall be available from the FITS Support Office.

PCOUNT Keyword The value field shall contain an integer that shall be used in any
way appropriate to define the data structure, consistent with Eq. 5.2.

GCOUNT Keyword The value field shall contain an integer that shall be used in any
way appropriate to define the data structure, consistent with Eq. 5.2.

EXTEND Keyword The use of extensions necessitates a single additional keyword in the
primary header of the FITS file. If the FITS file may contain extensions, a card image
with the keyword EXTEND and the value field containing the logical value T must appear
in the primary header immediately after the last NAXISn card image, or, if NAXIS=0,
the NAXIS card image. The presence of this keyword with the value T in the primary
header does not require that extensions be present.

5.4.2 Other Reserved Keywords

These keywords are optional but may be used only as defined in this standard. They
apply to any FITS structure with the meanings and restrictions defined below. Any
FITS structure may further restrict the use of these keywords.

5.4.2.1 Keywords Describing the History or Physical Construction of the
HDU

DATE Keyword Starting January 1, 2000, the following format shall be used. FITS
writers should commence writing the value of the DATE keyword in this format starting

NOST FITS Definition

22 SECTION 5. HEADERS

January 1, 1999 and before January 1, 2000. The value field shall contain a character
string giving the date on which the HDU was created, in the form YYYY-MM-DD, or the
date and time when the HDU was created, in the form YYYY-MM-DDThh:mm:ss[.sss. . .],
where YYYY shall be the four-digit calendar year number, MM the two-digit month number
with January given by 01 and December by 12, and DD the two-digit day of the month.
When both date and time are given, the literal T shall separate the date and time,
hh shall be the two-digit hour in the day, mm the two-digit number of minutes after
the hour, and ss[.sss. . .] the number of seconds (two digits followed by an optional
fraction) after the minute. No fields may be defaulted and no leading zeroes omitted.
The decimal part of the seconds field is optional and may be arbitrarily long, so long as
it is consistent with the rules for value formats of §5.2.

The value of the DATE keyword shall always be expressed in UTC when in this
format, for all data sets created on earth.

The following format may appear on files written before January 1, 2000. The value
field contains a character string giving the date on which the HDU was created, in the
form DD/MM/YY, where DD is the day of the month, MM the month number with January
given by 01 and December by 12, and YY the last two digits of the year, the first two
digits being understood to be 19. Specification of the date using Universal Time is
recommended but not assumed.

Copying of a FITS file does not require changing any of the keyword values in the
file’s HDUs.

ORIGIN Keyword The value field shall contain a character string identifying the or-
ganization or institution responsible for creating the FITS file.

BLOCKED Keyword This keyword may be used only in the primary header. It shall
appear within the first 36 card images of the FITS file. (Note: This keyword thus
cannot appear if NAXIS is greater than 31, or if NAXIS is greater than 30 and the EXTEND
keyword is present.) Its presence with the required logical value of T advises that the
physical block size of the FITS file on which it appears may be an integral multiple of
the logical record length, and not necessarily equal to it. Physical block size and logical
record length may be equal even if this keyword is present or unequal if it is absent.
It is reserved primarily to prevent its use with other meanings. Since the issuance of
version 1 of this standard, the BLOCKED keyword has been deprecated.

5.4.2.2 Keywords Describing Observations

DATE-OBS Keyword The format of the value field for DATE-OBS keywords shall follow
the prescriptions for the DATE keyword (§5.4.2.1). Either the 4-digit year format or the
2-digit year format may be used for observation dates from 1900 through 1999 although
the 4-digit format is preferred.

NASA/Science Office of Standards and Technology

5.4. KEYWORDS 23

When the format with a four-digit year is used, the default interpretations for time
shall be UTC for dates beginning 1972-01-01 and UT before. Other date and time scales
are permissible. The value of the DATE-OBS keyword shall be expressed in the principal
time system or time scale of the HDU to which it belongs; if there is any chance of
ambiguity, the choice shall be clarified in comments. The value of DATE-OBS shall be
assumed to refer to the start of an observation, unless another interpretation is clearly
explained in the comment field. Explicit specification of the time scale is recommended.
By default, times for TAI and times that run simultaneously with TAI, e.,g., UTC and
TT, will be assumed to be as measured at the detector (or, in practical cases, at the
observatory). For coordinate times such as TCG, TCB, and TDB which are tied to
an unambiguous coordinate system, the default shall be time as if the observation had
taken place at the origin of the coordinate time system. Conventions may be developed
that use other time systems. Appendix D of this document contains the appendix to
the agreement on a four digit year, which discusses time systems in some detail.

When the value of DATE-OBS is expressed in the two-digit year form, allowed for files
written before January 1, 2000 with a year in the range 1900-1999, there is no default
assumption as to whether it refers to the start, middle or end of an observation.

DATExxxx Keywords The value fields for all keywords beginning with the string DATE
whose value contains date, and optionally time, information shall follow the prescriptions
for the DATE-OBS keyword.

TELESCOP Keyword The value field shall contain a character string identifying the
telescope used to acquire the data associated with the header.

INSTRUME Keyword The value field shall contain a character string identifying the
instrument used to acquire the data associated with the header.

OBSERVER Keyword The value field shall contain a character string identifying who
acquired the data associated with the header.

OBJECT Keyword The value field shall contain a character string giving a name for
the object observed.

EQUINOX Keyword The value field shall contain a floating point number giving the
equinox in years for the celestial coordinate system in which positions are expressed.

EPOCH Keyword The value field shall contain a floating point number giving the
equinox in years for the celestial coordinate system in which positions are expressed.
Starting with Version 1, this standard has deprecated the use of the EPOCH keyword

NOST FITS Definition

24 SECTION 5. HEADERS

and thus it shall not be used in FITS files created after the adoption of this standard;
rather, the EQUINOX keyword shall be used.

5.4.2.3 Bibliographic Keywords

AUTHOR Keyword The value field shall contain a character string identifying who
compiled the information in the data associated with the header. This keyword is
appropriate when the data originate in a published paper or are compiled from many
sources.

REFERENC Keyword The value field shall contain a character string citing a reference
where the data associated with the header are published.

5.4.2.4 Commentary Keywords

COMMENT Keyword This keyword shall have no associated value; columns 9–80 may
contain any ASCII text. Any number of COMMENT card images may appear in a header.

HISTORY Keyword This keyword shall have no associated value; columns 9–80 may
contain any ASCII text. The text should contain a history of steps and procedures
associated with the processing of the associated data. Any number of HISTORY card
images may appear in a header.

Keyword Field is Blank Columns 1–8 contain ASCII blanks. Columns 9–80 may
contain any ASCII text. Any number of card images with blank keyword fields may
appear in a header.

5.4.2.5 Array Keywords

These keywords are used to describe the contents of an array, either alone or in a series
of random groups (§7). They are optional, but if they appear in the header describing
an array or groups, they must be used as defined in this section of this standard. They
shall not be used in headers describing other structures unless the meaning is the same
as that for a primary or groups array.

BSCALE Keyword This keyword shall be used, along with the BZERO keyword, when
the array pixel values are not the true physical values, to transform the primary data
array values to the true physical values they represent, using Eq. 5.3. The value field
shall contain a floating point number representing the coefficient of the linear term in
the scaling equation, the ratio of physical value to array value at zero offset. The default
value for this keyword is 1.0.

NASA/Science Office of Standards and Technology

5.4. KEYWORDS 25

BZERO Keyword This keyword shall be used, along with the BSCALE keyword, when
the array pixel values are not the true physical values, to transform the primary data
array values to the true values. The value field shall contain a floating point number
representing the physical value corresponding to an array value of zero. The default
value for this keyword is 0.0.

The transformation equation is as follows:

physical value = BZERO+ BSCALE× array value (5.3)

BUNIT Keyword The value field shall contain a character string, describing the phys-
ical units in which the quantities in the array, after application of BSCALE and BZERO,
are expressed. These units must follow the prescriptions of §5.3.

BLANK Keyword This keyword shall be used only in headers with positive values of
BITPIX (i.e., in arrays with integer data). Columns 1–8 contain the string, “BLANK ”
(ASCII blanks in columns 6–8). The value field shall contain an integer that specifies
the representation of array values whose physical values are undefined.

CTYPEn Keywords The value field shall contain a character string, giving the name
of the coordinate represented by axis n.

CRPIXn Keywords The value field shall contain a floating point number, identifying
the location of a reference point along axis n, in units of the axis index. This value is
based upon a counter that runs from 1 to NAXISn with an increment of 1 per pixel. The
reference point value need not be that for the center of a pixel nor lie within the actual
data array. Use comments to indicate the location of the index point relative to the
pixel.

CRVALn Keywords The value field shall contain a floating point number, giving the
value of the coordinate specified by the CTYPEn keyword at the reference point CRPIXn.
Units must follow the prescriptions of §5.3.

CDELTn Keywords The value field shall contain a floating point number giving the
partial derivative of the coordinate specified by the CTYPEn keywords with respect to the
pixel index, evaluated at the reference point CRPIXn, in units of the coordinate specified
by the CTYPEn keyword. These units must follow the prescriptions of §5.3.

CROTAn Keywords This keyword is used to indicate a rotation from a standard co-
ordinate system described by the CTYPEn to a different coordinate system in which the

NOST FITS Definition

26 SECTION 5. HEADERS

values in the array are actually expressed. Rules for such rotations are not further spec-
ified in this standard; the rotation should be explained in comments. The value field
shall contain a floating point number giving the rotation angle in degrees between axis
n and the direction implied by the coordinate system defined by CTYPEn.

DATAMAX Keyword The value field shall always contain a floating point number, re-
gardless of the value of BITPIX. This number shall give the maximum valid physical
value represented by the array, exclusive of any special values.

DATAMIN Keyword The value field shall always contain a floating point number, re-
gardless of the value of BITPIX. This number shall give the minimum valid physical
value represented by the array, exclusive of any special values.

5.4.2.6 Extension Keywords

These keywords are used to describe an extension and should not appear in the primary
header.

EXTNAME Keyword The value field shall contain a character string, to be used to
distinguish among different extensions of the same type, i.e., with the same value of
XTENSION, in a FITS file.

EXTVER Keyword The value field shall contain an integer, to be used to distinguish
among different extensions in a FITS file with the same type and name, i.e., the same
values for XTENSION and EXTNAME. The values need not start with 1 for the first extension
with a particular value of EXTNAME and need not be in sequence for subsequent values.
If the EXTVER keyword is absent, the file should be treated as if the value were 1.

EXTLEVEL Keyword The value field shall contain an integer, specifying the level in a
hierarchy of extension levels of the extension header containing it. The value shall be 1
for the highest level; levels with a higher value of this keyword shall be subordinate to
levels with a lower value. If the EXTLEVEL keyword is absent, the file should be treated
as if the value were 1.

5.4.3 Additional Keywords

5.4.3.1 Requirements

New keywords may be devised in addition to those described in this standard, so long
as they are consistent with the generalized rules for keywords and do not conflict with
mandatory or reserved keywords.

NASA/Science Office of Standards and Technology

5.4. KEYWORDS 27

5.4.3.2 Restrictions

No keyword in the primary header shall specify the presence of a specific extension in a
FITS file; only the EXTEND keyword described in §5.4.1.2 shall be used to indicate the
possible presence of extensions. No keyword in either the primary or extension header
shall explicitly refer to the physical block size, other than the deprecated BLOCKED
keyword of §5.4.2.1.

NOST FITS Definition

28 SECTION 5. HEADERS

NASA/Science Office of Standards and Technology

29

Section 6

Data Representation

Primary and extension data shall be represented in one of the formats described in this
section. FITS data shall be interpreted to be a byte stream. Bytes are in order of
decreasing significance. The byte that includes the sign bit shall be first, and the byte
that has the ones bit shall be last.

6.1 Characters

Each character shall be represented by one byte. A character shall be represented by its
7-bit ASCII [14] code in the low order seven bits in the byte. The high-order bit shall
be zero.

6.2 Integers

6.2.1 Eight-bit

Eight-bit integers shall be unsigned binary integers, contained in one byte.

6.2.2 Sixteen-bit

Sixteen-bit integers shall be twos-complement signed binary integers, contained in two
bytes.

6.2.3 Thirty-two-bit

Thirty-two-bit integers shall be twos-complement signed binary integers, contained in
four bytes.

NOST FITS Definition

30 SECTION 6. DATA REPRESENTATION

6.2.4 Unsigned Integers

Unsigned sixteen-bit integers can be represented in FITS files by subtracting 32768
from each value (thus offsetting the values into the range of a signed sixteen-bit integer)
before writing them to the FITS file. The BZERO keyword (or the TZEROn keyword in the
case of binary table columns with TFORMn = ’I’) must also be included in the header
with its value set to 32768 so that FITS reading software will add this offset to the
raw values in the FITS file, thus restoring them to the original unsigned integer values.
Unsigned thirty-two-bit integers can be represented in FITS files in a similar way by
applying an offset of 2147483648 (231) to the data values.

6.3 IEEE-754 Floating Point

Transmission of 32- and 64-bit floating point data within the FITS format shall use
the ANSI/IEEE-754 standard [15]. BITPIX = -32 and BITPIX = -64 signify 32- and
64-bit IEEE floating point numbers, respectively; the absolute value of BITPIX is used
for computing the sizes of data structures. The full IEEE set of number forms is allowed
for FITS interchange, including all special values.

The BLANK keyword should not be used when BITPIX = -32 or -64; rather, the
IEEE NaN should be used to represent an undefined value. Use of the BSCALE and
BZERO keywords is not recommended.

Appendix H has additional details on the IEEE format.

NASA/Science Office of Standards and Technology

31

Section 7

Random Groups Structure

Although it is standard FITS, the random groups structure has been used almost ex-
clusively for applications in radio interferometry; outside this field, few FITS readers
can read data in random groups format. The binary table extension (§8.3) can accom-
modate the structure described by random groups. While existing FITS files use the
format, and it is therefore included in this standard, its use for future applications has
been deprecated since the issue of Version 1 of this standard.

7.1 Keywords

7.1.1 Mandatory Keywords

The SIMPLE keyword is required to be the first keyword in the primary header of all
FITS files, including those with random groups records. If the random groups format
records follow the primary header, the card images of the primary header must use the
keywords defined in Table 7.1 in the order specified. No other keywords may intervene
between the SIMPLE keyword and the last NAXISn keyword.

The total number of bits in the random groups records exclusive of the fill described
in §7.2 is given by the following expression:

Nbits = |BITPIX| × GCOUNT×
(PCOUNT+ NAXIS2× NAXIS3× · · · × NAXISm), (7.1)

where Nbits is non-negative and the number of bits excluding fill, m is the value of NAXIS,
and BITPIX, GCOUNT, PCOUNT, and the NAXISn represent the values associated with those
keywords.

NOST FITS Definition

32 SECTION 7. RANDOM GROUPS STRUCTURE

1 SIMPLE
2 BITPIX
3 NAXIS
4 NAXIS1
5 NAXISn, n=2, . . . , value of NAXIS

...
(other keywords, which must include . . .)
GROUPS
PCOUNT
GCOUNT
...

last END

Table 7.1: Mandatory keywords in primary header preceding random groups.

7.1.1.1 SIMPLE Keyword

The card image containing this keyword is structured in the same way as if a primary
data array were present (§5.4.1).

7.1.1.2 BITPIX Keyword

The card image containing this keyword is structured as prescribed in §5.4.1.

7.1.1.3 NAXIS Keyword

The value field shall contain an integer ranging from 1 to 999, representing one more
than the number of axes in each data array.

7.1.1.4 NAXIS1 Keyword

The value field shall contain the integer 0, a signature of random groups format indi-
cating that there is no primary data array.

7.1.1.5 NAXISn Keywords (n=2, . . . , value of NAXIS)

The value field shall contain an integer, representing the number of positions along axis
n-1 of the data array in each group.

NASA/Science Office of Standards and Technology

7.1. KEYWORDS 33

7.1.1.6 GROUPS Keyword

The value field shall contain the logical constant T. The value T associated with this
keyword implies that random groups records are present.

7.1.1.7 PCOUNT Keyword

The value field shall contain an integer equal to the number of parameters preceding
each array in a group.

7.1.1.8 GCOUNT Keyword

The value field shall contain an integer equal to the number of random groups present.

7.1.1.9 END Keyword

The card image containing this keyword is structured as described in §5.4.1.

7.1.2 Reserved Keywords

7.1.2.1 PTYPEn Keywords

The value field shall contain a character string giving the name of parameter n. If the
PTYPEn keywords for more than one value of n have the same associated name in the value
field, then the data value for the parameter of that name is to be obtained by adding the
derived data values of the corresponding parameters. This rule provides a mechanism
by which a random parameter may have more precision than the accompanying data
array elements; for example, by summing two 16-bit values with the first scaled relative
to the other such that the sum forms a number of up to 32-bit precision.

7.1.2.2 PSCALn Keywords

This keyword shall be used, along with the PZEROn keyword, when the nth FITS group
parameter value is not the true physical value, to transform the group parameter value
to the true physical values it represents, using Eq. 7.2. The value field shall contain
a floating point number representing the coefficient of the linear term in Eq. 7.2, the
scaling factor between true values and group parameter values at zero offset. The default
value for this keyword is 1.0.

7.1.2.3 PZEROn Keywords

This keyword shall be used, along with the PSCALn keyword, when the nth FITS group
parameter value is not the true physical value, to transform the group parameter value
to the physical value. The value field shall contain a floating point number, representing

NOST FITS Definition

34 SECTION 7. RANDOM GROUPS STRUCTURE

the true value corresponding to a group parameter value of zero. The default value for
this keyword is 0.0. The transformation equation is as follows:

physical value = PZEROn+ PSCALn× group parameter value (7.2)

7.2 Data Sequence

Random groups data shall consist of a set of groups. The number of groups shall be
specified by the GCOUNT keyword in the associated header record. Each group shall
consist of the number of parameters specified by the PCOUNT keyword followed by an
array with the number of elements Nelem given by the following expression:

Nelem = (NAXIS2× NAXIS3× · · · × NAXISm), (7.3)

where Nelem is the number of elements in the data array in a group, m is the value of
NAXIS, and the NAXISn represent the values associated with those keywords.

The first parameter of the first group shall appear in the first location of the first
data record. The first element of each array shall immediately follow the last parameter
associated with that group. The first parameter of any subsequent group shall imme-
diately follow the last element of the array of the previous group. The arrays shall be
organized internally in the same way as an ordinary primary data array. If the groups
data do not fill the final record, the remainder of the record shall be filled with zero
values in the same way as a primary data array (§4.3.2). If random groups records are
present, there shall be no primary data array.

7.3 Data Representation

Permissible data representations are those listed in §6. Parameters and elements of
associated data arrays shall have the same representation. Should more precision be
required for an associated parameter than for an element of a data array, the parameter
shall be divided into two or more addends, represented by the same value for the PTYPEn
keyword. The value shall be the sum of the physical values, which may have been
obtained from the group parameter values using the PSCALn and PZEROn keywords.

NASA/Science Office of Standards and Technology

35

Section 8

Standard Extensions

8.1 The ASCII Table Extension

Data shall appear as an ASCII table extension if the primary header of the FITS file
has the keyword EXTEND set to T and the first keyword of that extension header has
XTENSION= ’TABLE ’.

8.1.1 Mandatory Keywords

The header of an ASCII table extension must use the keywords defined in Table 8.1.
The first keyword must be XTENSION; the seven keywords following XTENSION (BITPIX
. . . TFIELDS) must be in the order specified with no intervening keywords.

XTENSION Keyword The value field shall contain the character string value text
’TABLE ’.

BITPIX Keyword The value field shall contain the integer 8, denoting that the array
contains ASCII characters.

NAXIS Keyword The value field shall contain the integer 2, denoting that the included
data array is two-dimensional: rows and columns.

NAXIS1 Keyword The value field shall contain a non-negative integer, giving the
number of ASCII characters in each row of the table.

NAXIS2 Keyword The value field shall contain a non-negative integer, giving the
number of rows in the table.

NOST FITS Definition

36 SECTION 8. STANDARD EXTENSIONS

1 XTENSION
2 BITPIX
3 NAXIS
4 NAXIS1
5 NAXIS2
6 PCOUNT
7 GCOUNT
8 TFIELDS

...
(other keywords, which must include . . .)
TBCOLn, n=1, 2, . . . , k where k is the value of TFIELDS
TFORMn, n=1, 2, . . . , k where k is the value of TFIELDS
...

last END

Table 8.1: Mandatory keywords in ASCII table extensions.

PCOUNT Keyword The value field shall contain the integer 0.

GCOUNT Keyword The value field shall contain the integer 1; the data records contain
a single table.

TFIELDS Keyword The value field shall contain a non-negative integer representing
the number of fields in each row. The maximum permissible value is 999.

TBCOLn Keywords The value field of this indexed keyword shall contain an integer
specifying the column in which field n starts. The first column of a row is numbered 1.

TFORMn Keywords The value field of this indexed keyword shall contain a character
string describing the format in which field n is encoded. Only the formats in Table 8.2,
interpreted as ANSI FORTRAN-77 [13] input formats and discussed in more detail in
§8.1.5, are permitted for encoding. Format codes must be specified in upper case. Other
format editing codes common to ANSI FORTRAN-77 such as repetition, positional
editing, scaling, and field termination are not permitted. All values in numeric fields
have a number base of ten (i.e., they are decimal); binary, octal, hexadecimal, and other
representations are not permitted.

NASA/Science Office of Standards and Technology

8.1. THE ASCII TABLE EXTENSION 37

Field Value Data Type
Aw Character
Iw Decimal integer

Fw.d Single precision real
Ew.d Single precision real, exponential notation
Dw.d Double precision real, exponential notation

Table 8.2: Valid TFORMn format values in TABLE extensions.

END Keyword This keyword has no associated value. Columns 9–80 shall contain
ASCII blanks.

8.1.2 Other Reserved Keywords

In addition to the mandatory keywords defined in §8.1.1, the following keywords may
be used to describe the structure of an ASCII table data array. They are optional, but
if they appear within an ASCII table extension header, they must be used as defined in
this section of this standard.

TSCALn Keywords This indexed keyword shall be used, along with the TZEROn key-
word, when the quantity in field n does not represent a true physical quantity. The
value field shall contain a floating point number representing the coefficient of the linear
term in Eq. 8.1, which must be used to compute the true physical value of the field.
The default value for this keyword is 1.0. This keyword may not be used for A-format
fields.

TZEROn Keywords This indexed keyword shall be used, along with the TSCALn key-
word, when the quantity in field n does not represent a true physical quantity. The
value field shall contain a floating point number representing the zero point for the true
physical value of field n. The default value for this keyword is 0.0. This keyword may
not be used for A-format fields.

The transformation equation used to compute a true physical value from the quantity
in field n is

physical value = TZEROn+ TSCALn× field value. (8.1)

TNULLn Keywords The value field for this indexed keyword shall contain the character
string that represents an undefined value for field n. The string is implicitly blank filled
to the width of the field.

NOST FITS Definition

38 SECTION 8. STANDARD EXTENSIONS

TTYPEn Keywords The value field for this indexed keyword shall contain a character
string, giving the name of field n. It is recommended that only letters, digits, and
underscore (hexadecimal code 5F, “ ”) be used in the name. String comparisons with
the values of TTYPEn keywords should not be case sensitive. The use of identical names
for different fields should be avoided.

TUNITn Keywords The value field shall contain a character string describing the
physical units in which the quantity in field n, after any application of TSCALn and
TZEROn, is expressed. Units must follow the prescriptions in §5.3.

8.1.3 Data Sequence

The table is constructed from a two-dimensional array of ASCII characters. The row
length and the number of rows shall be those specified, respectively, by the NAXIS1 and
NAXIS2 keywords of the associated header records. The number of characters in a row
and the number of rows in the table shall determine the size of the character array.
Every row in the array shall have the same number of characters. The first character
of the first row shall be at the start of the record immediately following the last header
record. The first character of subsequent rows shall follow immediately the character at
the end of the previous row, independent of the record structure. The positions in the
last data record after the last character of the last row of the data array shall be filled
with ASCII blanks.

8.1.4 Fields

Each row in the array shall consist of a sequence of fields, with one entry in each field.
For every field, the ANSI FORTRAN-77 format of the information contained, location in
the row of the beginning of the field and (optionally) the field name, shall be specified in
keywords of the associated header records. A separate format keyword must be provided
for each field. The location and format of fields shall be the same for every row. Fields
may overlap. There may be characters in a table row that are not included in any field.

8.1.5 Entries

All data in an ASCII table extension field shall be ASCII text in a format that conforms
to the rules for fixed field input in ANSI FORTRAN-77 [13] format, as described below,
including implicit decimal points. The only possible formats shall be those specified in
Table 8.2. If values of -0 and +0 must be distinguished, then the sign character should
appear in a separate field in character format. TNULLn keywords may be used to specify
a character string that represents an undefined value in each field. The characters
representing an undefined value may differ from field to field but must be the same

NASA/Science Office of Standards and Technology

8.1. THE ASCII TABLE EXTENSION 39

within a field. Writers of ASCII tables should select a format appropriate to the form,
range of values, and accuracy of the data in the table.

The value of a character-formatted (Aw) field is a character string of width w con-
taining the characters in columns TBCOLn through TBCOLn+w− 1.

The value of an integer-formatted (Iw) field is an integer number determined by
removing all blanks from columns TBCOLn through TBCOLn+w− 1 and interpreting the
remaining, right-justified characters as a signed decimal integer. A blank field has value
0. All characters other than blanks, the decimal integers (“0” through “9”) and a single
leading sign character (“+” and “-”) are forbidden.

The value of a real-formatted field (Fw.d, Ew.d, Dw.d) is a real number determined
from the w characters from columns TBCOLn through TBCOLn+w−1. The value is formed
by

1. discarding all blank characters and right-justifying the non-blank characters,

2. interpreting the first non-blank characters as a numeric string consisting of a single
optional sign (“+” or “-”) followed by one or more decimal digits (“0” through
“9”) optionally containing a single decimal point (“.”). The numeric string is
terminated by the end of the right-justified field or by the occurrence of any
character other than a decimal point (“.”) and the decimal integers (“0” through
“9”). If the string contains no explicit decimal point, then the implicit decimal
point is taken as immediately preceding the rightmost d digits of the string, with
leading zeros assumed if necessary.

3. if the numeric string is terminated by a

(a) “+” or “-”, interpreting the following string as an exponent in the form of a
signed decimal integer, or

(b) “E”, or “D”, interpreting the following string as an exponent of the form E or
D followed by an optionally signed decimal integer constant.

4. The exponent string, if present, is terminated by the end of the right-justified
string.

5. Characters other than those specified above are forbidden.

The numeric value of the table field is then the value of the numeric string multi-
plied by ten (10) to the power of the exponent string, i.e., value = numeric string ×
10(exponent string). The default exponent is zero and a blankfield has value zero. There is
no difference between the F, D, and E formats; the content of the string determines its
interpretation. Numbers requiring more precision and/or range than the local computer
can support may be represented. It is good form to specify a D format in TFORMn for
a column of an ASCII table when that column will contain numbers that cannot be
accurately represented in 32-bit IEEE binary format (see Appendix H).

NOST FITS Definition

40 SECTION 8. STANDARD EXTENSIONS

Note that the above definitions allow for embedded blanks anywhere in integer-
formatted and real-formatted fields and implicit decimal points in real-formatted fields.
FITS reading tasks will have to honor these flexibilities. However, since these flexibilities
are likely to cause confusion and possible misinterpretation, it is recommended that
FITS writing tasks write tables with explicit decimal points and no embedded or trailing
blanks whenever possible.

8.2 Image Extension

Data shall appear as an image extension if the primary header of the FITS file has the
keyword EXTEND set to T and the first keyword of that extension header has
XTENSION= ’IMAGE ’.

8.2.1 Mandatory Keywords

The XTENSION keyword is required to be the first keyword of all image extensions.
The card images in the header of an image extension must use the keywords defined in
Table 8.3 in the order specified. No other keywords may intervene between the XTENSION
and GCOUNT keywords.

1 XTENSION
2 BITPIX
3 NAXIS
4 NAXISn, n = 1, . . . , NAXIS
5 PCOUNT
6 GCOUNT

...
(other keywords . . .)
...

last END

Table 8.3: Mandatory keywords in image extensions.

XTENSION Keyword The value field shall contain the character string value text
’IMAGE ’.

BITPIX Keyword The value field shall contain an integer. The absolute value is
used in computing the sizes of data structures. It shall specify the number of bits that

NASA/Science Office of Standards and Technology

8.3. BINARY TABLE EXTENSION 41

represent a data value. The only valid values of BITPIX are given in Table 5.2.

NAXIS Keyword The value field shall contain a non-negative integer no greater than
999, representing the number of axes in the associated data array. A value of zero
signifies that no data follow the header in the image extension.

NAXISn Keywords The value field of this indexed keyword shall contain a non-
negative integer, representing the number of elements along axis n of a data array.
The NAXISn must be present for all values n = 1, ..., NAXIS, and for no other values
of n. A value of zero for any of the NAXISn signifies that no data follow the header in
the image extension. If NAXIS is equal to 0, there should not be any NAXISn keywords.

PCOUNT Keyword The value field shall contain the integer 0.

GCOUNT Keyword The value field shall contain the integer 1; each image extension
contains a single array.

END Keyword This keyword has no associated value. Columns 9–80 shall be filled
with ASCII blanks.

8.2.2 Units

The units of all header keyword values in an image extension shall follow the prescrip-
tions in §5.3.

8.2.3 Data Sequence

The data format shall be identical to that of a primary data array as described in §4.3.2.

8.3 Binary Table Extension

Data shall appear as a binary table extension if the primary header of the FITS file
has the keyword EXTEND set to T and the first keyword of that extension header has
XTENSION= ’BINTABLE’.

8.3.1 Mandatory Keywords

The XTENSION keyword is the first keyword of all binary table extensions. The seven
keywords following (BITPIX . . . TFIELDS) must be in the order specified in Table 8.4,
with no intervening keywords.

NOST FITS Definition

42 SECTION 8. STANDARD EXTENSIONS

1 XTENSION
2 BITPIX
3 NAXIS
4 NAXIS1
5 NAXIS2
6 PCOUNT
7 GCOUNT
8 TFIELDS

...
(other keywords, which must include . . .)
TFORMn, n=1, 2, . . . , k where k is the value of TFIELDS
...

last END

Table 8.4: Mandatory keywords in binary table extensions.

XTENSION Keyword The value field shall contain the character string ’BINTABLE’.

BITPIX Keyword The value field shall contain the integer 8, denoting that the array
is an array of 8-bit bytes.

NAXIS Keyword The value field shall contain the integer 2, denoting that the included
data array is two-dimensional: rows and columns.

NAXIS1 Keyword The value field shall contain a non-negative integer, giving the
number of 8-bit bytes in each row of the table.

NAXIS2 Keyword The value field shall contain a non-negative integer, giving the
number of rows in the table.

PCOUNT Keyword The value field shall contain the number of bytes that follow the
table in the associated extension data.

GCOUNT Keyword The value field shall contain the integer 1; the data records contain
a single table.

TFIELDS Keyword The value field shall contain a non-negative integer representing
the number of fields in each row. The maximum permissible value is 999.

NASA/Science Office of Standards and Technology

8.3. BINARY TABLE EXTENSION 43

TFORMn Keywords The value field of this indexed keyword shall contain a character
string of the form rTa. The repeat count r is the ASCII representation of a non-negative
integer specifying the number of elements in field n. The default value of r is 1; the
repeat count need not be present if it has the default value. A zero element count,
indicating an empty field, is permitted. The data type T specifies the data type of the
contents of field n. Only the data types in Table 8.5 are permitted. The format codes
must be specified in upper case. For fields of type P, the only permitted repeat counts
are 0 and 1. The additional characters a are optional and are not further defined in this
standard. Table 8.5 lists the number of bytes each data type occupies in a table row.
The first field of a row is numbered 1. The total number of bytes nrow in a table row is
given by

nrow =
TFIELDS∑

i=1

ribi (8.2)

where ri is the repeat count for field i, bi is the number of bytes for the data type in
field i, and TFIELDS is the value of that keyword, must equal the value of NAXIS1.

TFORMn value Description 8-bit Bytes
L Logical 1
X Bit *
B Unsigned byte 1
I 16-bit integer 2
J 32-bit integer 4
A Character 1
E Single precision floating point 4
D Double precision floating point 8
C Single precision complex 8
M Double precision complex 16
P Array Descriptor 8

∗ number of 8-bit bytes needed to contain all bits

Table 8.5: Valid TFORMn data types in BINTABLE extensions.

END Keyword This keyword has no associated value. Columns 9–80 shall contain
ASCII blanks.

NOST FITS Definition

44 SECTION 8. STANDARD EXTENSIONS

8.3.2 Other Reserved Keywords

In addition to the mandatory keywords defined in §8.3.1, these keywords may be used
to describe the structure of a binary table data array. They are optional, but if they
appear within a binary table extension header, they must be used as defined in this
section of this standard.

TTYPEn Keywords The value field for this indexed keyword shall contain a character
string, giving the name of field n. It is recommended that only letters, digits, and
underscore (hexadecimal code 5F, “ ”) be used in the name. String comparisons with
the values of TTYPEn keywords should not be case sensitive. The use of identical names
for different fields should be avoided.

TUNITn Keywords The value field shall contain a character string describing the
physical units in which the quantity in field n, after any application of TSCALn and
TZEROn, is expressed. Units must follow the prescriptions in §5.3.

TNULLn Keywords The value field for this indexed keyword shall contain the integer
that represents an undefined value for field n of data type B, I, or J. The keyword may
not be used if field n is of any other data type.

TSCALn Keywords This indexed keyword shall be used, along with the TZEROn key-
word, when the quantity in field n does not represent a true physical quantity. It may
not be used if the format of field n is A, L, or X. The interpretation for fields of type P
is not defined. A proposed interpretation is described in Appendix B.1. For fields with
all other data types, the value field shall contain a floating point number representing
the coefficient of the linear term in Eq. 8.1, which is used to compute the true physical
value of the field, or, in the case of the complex data types C and M, of the real part
of the field, with the imaginary part of the scaling factor set to zero. The default value
for this keyword is 1.0.

TZEROn Keywords This indexed keyword shall be used, along with the TSCALn key-
word, when the quantity in field n does not represent a true physical quantity. It may
not be used if the format of field n is A, L, or X. The interpretation for fields of type P
is not defined. A proposed interpretation is described in Appendix B.1. For fields with
all other data types, the value field shall contain a floating point number representing
the true physical value corresponding to a value of zero in field n of the FITS file, or,
in the case of the complex data types C and M, in the real part of the field, with the
imaginary part set to zero. The default value for this keyword is 0.0. Equation 8.1 is
used to compute a true physical value from the quantity in field n.

NASA/Science Office of Standards and Technology

8.3. BINARY TABLE EXTENSION 45

TDISPn Keywords The value field of this indexed keyword shall contain a character
string describing the format recommended for the display of the contents of field n.
If the table value has been scaled, the physical value, derived using Eq. 8.1, shall be
displayed. All elements in a field shall be displayed with a single, repeated format. For
purposes of display, each byte of bit (type X) and byte (type B) arrays is treated a an
unsigned integer. Arrays of type A may be terminated with a zero byte. Only the format
codes in Table 8.6, discussed in §8.3.4, are permitted for encoding. The format codes
must be specified in upper case. If the Bw.m, Ow.m, and Zw.m formats are not readily
available to the reader, the Iw.m display format may be used instead, and if the ENw.d
and ESw.d formats are not available, Ew.d may be used. The meaning of this keyword
is not defined for fields of type P in this standard but may be defined in conventions
using such fields.

Field Value Data Type
Aw Character
Lw Logical

Iw.m Integer
Bw.m Binary, integers only
Ow.m Octal, integers only
Zw.m Hexadecimal, integers only
Fw.d Single precision real

Ew.dEe Single precision real, exponential notation
ENw.d Engineering; E format with exponent multiple of 3
ESw.d Scientific; same as EN but nonzero leading digit if not zero

Gw.dEe General; appears as F if significance not lost, else E.
Dw.dEe Double precision real, exponential notation

Table 8.6: Valid TDISPn format values in BINTABLE extensions. w is the width in char-
acters of displayed values, m is the minimum number of digits displayed, d is the number
of digits to right of decimal, and e is number of digits in exponent. The .m and Ee fields
are optional.

THEAP Keyword The value field of this keyword shall contain an integer providing
the separation, in bytes, between the start of the main data table and the start of a
supplemental data area called the heap. The default value shall be the product of the
values of NAXIS1 and NAXIS2. This keyword shall not be used if the value of PCOUNT is
zero. A proposed application of this keyword is presented in Appendix B.1.

NOST FITS Definition

46 SECTION 8. STANDARD EXTENSIONS

TDIMn Keywords The value field of this indexed keyword shall contain a character
string describing how to interpret the contents of field n as a multidimensional array,
providing the number of dimensions and the length along each axis. The form of the
value is not further specified by this standard. A proposed convention is described in
Appendix B.2.

8.3.3 Data Sequence

The data in a binary table extension shall consist of a Main Data Table which may, but
need not, be followed by additional bytes. The positions in the last data record after
the last additional byte, or, if there are no additional bytes, the last character of the
last row of the data array, shall be filled by setting all bits to zero.

8.3.3.1 Main Data Table

The table is constructed from a two-dimensional byte array. The number of bytes in a
row shall be specified by the value of the NAXIS1 keyword and the number of rows shall
be specified by the NAXIS2 keyword of the associated header records. Within a row,
fields shall be stored in order of increasing column number, as determined from the n
of the TFORMn keywords. The number of bytes in a row and the number of rows in the
table shall determine the size of the byte array. Every row in the array shall have the
same number of bytes. The first row shall begin at the start of the record immediately
following the last header record. Subsequent rows shall begin immediately following the
end of the previous row, with no intervening bytes, independent of the record structure.
Words need not be aligned along word boundaries.

Each row in the array shall consist of a sequence of fields. The number of elements
in each field and their data type shall be specified in keywords of the associated header
records. A separate format keyword must be provided for each field. The location and
format of fields shall be the same for every row. Fields may be empty, if the repeat
count specified in the value of the TFORMn keyword of the header is 0. The following
data types, and no others, are permitted.

Logical If the value of the TFORMn keyword specifies data type L, the contents of
field n shall consist of ASCII T indicating true or ASCII F, indicating false. A 0 byte
(hexadecimal 0) indicates an invalid value.

Bit Array If the value of the TFORMn keyword specifies data type X, the contents of
field n shall consist of a sequence of bits starting with the most significant bit; the bits
following shall be in order of decreasing significance, ending with the least significant
bit. A bit array shall be composed of an integral number of bytes, with those bits
following the end of the data set to zero. No null value is defined for bit arrays.

NASA/Science Office of Standards and Technology

8.3. BINARY TABLE EXTENSION 47

Character If the value of the TFORMn keyword specifies data type A, field n shall
contain a character string of zero or more members, composed of ASCII text. This
character string may be terminated before the length specified by the repeat count by
an ASCII NULL (hexadecimal code 00). Characters after the first ASCII NULL are
not defined. A string with the number of characters specified by the repeat count is not
NULL terminated. Null strings are defined by the presence of an ASCII NULL as the
first character.

Unsigned 8-Bit Integer If the value of the TFORMn keyword specifies data type B,
the data in field n shall consist of unsigned 8-bit integers, with the most significant bit
first, and subsequent bits in order of decreasing significance. Null values are given by
the value of the associated TNULLn keyword.

16-Bit Integer If the value of the TFORMn keyword specifies data type I, the data in
field n shall consist of twos-complement signed 16-bit integers, contained in two bytes.
The most significant byte shall be first. Within each byte the most significant bit shall
be first, and subsequent bits shall be in order of decreasing significance. Null values
are given by the value of the associated TNULLn keyword. Unsigned integers can be
represented using the convention described in § 6.2.4.

32-Bit Integer If the value of the TFORMn keyword specifies data type J, the data
in field n shall consist of twos-complement signed 32-bit integers, contained in four
bytes. The most significant byte shall be first, and subsequent bytes shall be in order
of decreasing significance. Within each byte, the most significant bit shall be first, and
subsequent bits shall be in order of decreasing significance. Null values are given by the
value of the associated TNULLn keyword. Unsigned integers can be represented using
the convention described in § 6.2.4.

Single Precision Floating Point If the value of the TFORMn keyword specifies data
type E, the data in field n shall consist of ANSI/IEEE-754 [15] 32-bit floating point
numbers, as described in Appendix H. All IEEE special values are recognized. The
IEEE NaN is used to represent invalid values.

Double Precision Floating Point If the value of the TFORMn keyword specifies
data type D, the data in field n shall consist of ANSI/IEEE-754 [15] 64-bit double
precision floating point numbers, as described in Appendix H. All IEEE special values
are recognized. The IEEE NaN is used to represent invalid values.

Single Precision Complex If the value of the TFORMn keyword specifies data type C,
the data in field n shall consist of a sequence of pairs of 32-bit single precision floating

NOST FITS Definition

48 SECTION 8. STANDARD EXTENSIONS

point numbers. The first member of each pair shall represent the real part of a complex
number, and the second member shall represent the imaginary part of that complex
number. If either member contains a NaN, the entire complex value is invalid.

Double Precision Complex If the value of the TFORMn keyword specifies data type
M, the data in field n shall consist of a sequence of pairs of 64-bit double precision floating
point numbers. The first member of each pair shall represent the real part of a complex
number, and the second member of the pair shall represent the imaginary part of that
complex number. If either member contains a NaN, the entire complex value is invalid.

Array Descriptor If the value of the TFORMn keyword specifies data type P, the data
in field n shall consist of not more than one pair of 32-bit integers. The meaning of
these integers is not defined by this standard. The proposed application of this data
type is described in Appendix B.1.

8.3.3.2 Bytes Following Main Table

The main data table shall be followed by zero or more bytes, as specified by the value of
the PCOUNT keyword. The meaning of these bytes is not further defined by this standard.
One proposed application is described in Appendix B.1.

8.3.4 Data Display

Character data are encoded under format code Aw. If the character datum has length less
than or equal to w, it is represented on output right-justified in a string of w characters.
If the character datum has length greater than w, the first w characters of the datum are
represented on output in a string of w characters. Character data are not surrounded
by single or double quotation marks unless those marks are themselves part of the data
value.

Logical data are encoded under format code Lw. Logical data are represented on
output with the character T for true or F for false right justified in a blank-filled string
of w characters. A null value may be represented by a completely blank string of w
characters.

Integer data (including bit X and byte B type fields) are encoded under format codes
Iw.m, Bw.m, Ow.m, and Zw.m. The default value of m is one and the “.m” is optional.
The first letter of the code specifies the number base for the encoding with I for decimal
(10), B for binary (2), O for octal (8), and Z for hexadecimal (16). Hexadecimal format
uses the upper-case letters A through F to represent decimal values 10 through 15. The
output field consists of w characters containing zero or more leading blanks followed by a
minus if the internal datum is negative followed by the magnitude of the internal datum
in the form of an unsigned integer constant in the specified number base with only as

NASA/Science Office of Standards and Technology

8.3. BINARY TABLE EXTENSION 49

many leading zeros as are needed to have at least m numeric digits. Note that m ≤ w
is allowed if all values are positive, but m < w is required if any values are negative. If
the number of digits required to represent the integer datum exceeds w, then the output
field consists of a string of w asterisk (*) characters.

Real data are encoded under format codes Fw.d, Ew.dEe, Dw.dEe, ENw.d, and ESw.d.
In all cases, the output is a string of w characters including the decimal point, any sign
characters, and any exponent including the exponent’s indicators, signs, and values. If
the number of digits required to represent the real datum exceeds w, then the output
field consists of a string of w asterisk (*) characters. In all cases, d specifies the number
of digits to appear to the right of the decimal point. The F format code output field
consists of w − d − 1 characters containing zero or more leading blanks followed by a
minus if the internal datum is negative followed by the absolute magnitude of the internal
datum in the form of an unsigned integer constant. These characters are followed by a
decimal point (“.”) and d characters giving the fractional part of the internal datum,
rounded by the normal rules of arithmetic to d fractional digits. For the E and D format
codes, an exponent is taken such that the fraction 0.1 ≤ |datum|/10exponent < 1.0. The
fraction (with appropriate sign) is output with an F format of width w−e−2 characters
with d characters after the decimal followed by an E or D followed by the exponent as
a signed e + 1 character integer with leading zeros as needed. The default value of e
is 2 when the Ee portion of the format code is omitted. If the exponent value will not
fit in e + 1 characters but will fit in e + 2 then the E (or D) is omitted and the wider
field used. If the exponent value will not fit (with a sign character) in e+ 2 characters,
then the entire w-character output field is filled with asterisks (*). The ES format code
is processed in the same manner as the E format code except that the exponent is taken
so that 1.0 ≤ fraction < 10. The EN format code is processed in the same manner as the
E format code except that the exponent is taken to be an integer multiple of 3 and so
that 1.0 ≤ fraction < 1000.0. All real format codes have number base 10. There is no
difference between E and D format codes on input other than an implication with the
latter of greater precision in the internal datum.

The Gw.dEe format code may be used with data of any type. For data of type
integer, logical, or character, it is equivalent to Iw, Lw, or Aw, respectively. For data
of type real, it is equivalent to an F format (with different numbers of characters after
the decimal) when that format will accurately represent the value and is equivalent to
an E format when the number (in absolute value) is either very small or very large.
Specifically, for real values outside the range 0.1 − 0.5×10−d−1 ≤ value < 10d − 0.5, it
is equivalent to Ew.dEe. For real values within the above range, it is equivalent to Fw′.d′

followed by 2+e blanks, where w′ = w−e−2 and d′ = d−k for k = 0, 1, . . . , d if the real
datum value lies in the range 10k−1

(
1 − 0.5×10−d

) ≤ value ≤ 10k
(
1 − 0.5×10−d

)
.

Complex data are encoded with any of the real data formats as described above.
The same format is used for the real and imaginary parts. It is recommended that the
2 values be separated by a comma and enclosed in parentheses with a total field width

NOST FITS Definition

50 SECTION 8. STANDARD EXTENSIONS

of 2w + 3.

NASA/Science Office of Standards and Technology

51

Section 9

Restrictions on Changes

Any structure that is a valid FITS structure shall remain a valid FITS structure at all
future times. Use of certain valid FITS structures may be deprecated by this or future
FITS standard documents.

NOST FITS Definition

52 SECTION 9. RESTRICTIONS ON CHANGES

NASA/Science Office of Standards and Technology

53

Appendix A

Formal Syntax of Card Images

(This Appendix is not part of the NOST FITS standard but is included for convenient
reference.)

The following notation is used in defining the formal syntax.

:= means “is defined to be”
X | Y means one of X or Y (no ordering relation is implied)
[X] means that X is optional
X... means X is repeated 1 or more times
‘B’ means the ASCII character B
‘A’–‘Z’ means one of the ASCII characters A through Z
\0xnn means the ASCII character associated with the hexadecimal code nn
{...} expresses a constraint or a comment (it immediately follows the syntax rule)

The following statements define the formal syntax used in FITS free format card
images.

FITS card image :=
FITS commentary card image | FITS value card image

FITS commentary card image :=
COMMENT keyword [ascii text char...] |
HISTORY keyword [ascii text char...] |
BLANKFIELD keyword [ascii text char...] |
keyword field anychar but equal [ascii text char...] |
keyword field ’=’ anychar but space [ascii text char...]

{Constraint: The total number of characters in a FITS commentary card image must
be exactly equal to 80.}

NOST FITS Definition

54 APPENDIX A. FORMAL SYNTAX OF CARD IMAGES

FITS value card image :=
keyword field value indicator [space...] [value] [space...] [comment]

{Constraint: The total number of characters in a FITS value card image must be ex-
actly equal to 80.}
{Comment: If the value field is not present, the value of the FITS keyword is not de-
fined.}

keyword field :=
[keyword char...] [space...]

{Constraint: The total number of characters in the keyword field must be exactly equal
to 8.}

keyword char :=
‘A’–‘Z’ | ‘0’–‘9’ | ‘ ’ | ‘-’

COMMENT keyword :=
‘C’ ‘O’ ‘M’ ‘M’ ‘E’ ‘N’ ‘T’ space

HISTORY keyword :=
‘H’ ‘I’ ‘S’ ‘T’ ‘O’ ‘R’ ‘Y’ space

BLANKFIELD keyword :=
space space space space space space space space

value indicator :=
‘=’ space

space :=
‘ ’

comment :=
‘/’ [ascii text char...]

ascii text char :=
space–‘~’

anychar but equal :=
space–‘<’ | ‘>’–‘~’

anychar but space :=
‘!’–‘~’

NASA/Science Office of Standards and Technology

55

value :=
character string value | logical value | integer value | floating value |
complex integer value | complex floating value

character string value :=
begin quote [string text char...] end quote

{Constraint: The begin quote and end quote are not part of the character string value
but only serve as delimiters. Leading spaces are significant; trailing spaces are not.}

begin quote :=
quote

end quote :=
quote

{Constraint: The ending quote must not be immediately followed by a second quote.}

quote :=
\0x27

string text char :=
ascii text char

{Constraint: A string text char is identical to an ascii text char except for the quote
char; a quote char is represented by two successive quote chars.}

logical value :=
‘T’ | ‘F’

integer value :=
[sign] digit [digit...]

{Comment: Such an integer value is interpreted as a signed decimal number. It may
contain leading zeros.}

sign :=
‘-’ | ‘+’

digit :=
‘0’–‘9’

floating value :=
decimal number [exponent]

NOST FITS Definition

56 APPENDIX A. FORMAL SYNTAX OF CARD IMAGES

decimal number :=
[sign] [integer part] [?.? [fraction part]]

{Constraint: At least one of the integer part and fraction part must be present.}

integer part :=
digit | [digit...]

fraction part :=
digit | [digit...]

exponent :=
exponent letter [sign] digit [digit...]

exponent letter :=
‘E’ | ‘D’

complex integer value :=
‘(’ [space...] real integer part [space...] ‘,’ [space...]
imaginary integer part [space...] ‘)’

real integer part :=
integer value

imaginary integer part :=
integer value

complex floating value :=
‘(’ [space...] real floating part [space...] ‘,’ [space...]
imaginary floating part [space...] ‘)’

real floating part :=
floating value

imaginary floating part :=
floating value

NASA/Science Office of Standards and Technology

57

Appendix B

Proposed Binary Table
Conventions

(This Appendix is not part of the NOST FITS Standard but is included for informa-
tional purposes only.)

In the paper describing the binary table extension, type name ’BINTABLE’ [10], the
authors present three conventions: one for variable length arrays, one for multidimen-
sional arrays and one for substring arrays. These conventions, discussed in appendixes
to the proposal, are not part of the formal BINTABLE rules adopted by the IAUFWG
but are expected to enjoy wide acceptance. The draft text for those appendixes, avail-
able on-line in the directory http://www.cv.nrao.edu/fits/documents/standards/,
is reproduced here nearly verbatim; the only changes are those required for stylistic
consistency with the rest of this document.

B.1 “Variable Length Array” Facility

One of the most attractive features of binary tables is that any field of the table can be
an array. In the standard case this is a fixed size array, i.e., a fixed amount of storage
is allocated in each record for the array data—whether it is used or not. This is fine so
long as the arrays are small or a fixed amount of array data will be stored in each record,
but if the stored array length varies for different records, it is necessary to impose a
fixed upper limit on the size of the array that can be stored. If this upper limit is made
too large excessive wasted space can result and the binary table mechanism becomes
seriously inefficient. If the limit is set too low then it may become impossible to store
certain types of data in the table.

The “variable length array” construct presented here was devised to deal with this
problem. Variable length arrays are implemented in such a way that, even if a table
contains such arrays, a simple reader program which does not understand variable length

NOST FITS Definition

58 APPENDIX B. PROPOSED BINARY TABLE CONVENTIONS

arrays will still be able to read the main table (in other words a table containing variable
length arrays conforms to the basic binary table standard). The implementation chosen
is such that the records in the main table remain fixed in size even if the table contains
a variable length array field, allowing efficient random access to the main table.

Variable length arrays are logically equivalent to regular static arrays, the only
differences being 1) the length of the stored array can differ for different records, and 2)
the array data is not stored directly in the table records. Since a field of any datatype can
be a static array, a field of any datatype can also be a variable length array (excluding
type P, the variable length array descriptor itself, which is not a datatype so much as
a storage class specifier). Conventions such as TDIMn (see Appendix B.2) apply equally
to both variable length and static arrays.

A variable length array is declared in the table header with a special field datatype
specifier of the form

rPt(emax)

where the “P” indicates the amount of space occupied by the array descriptor in the
data record (64 bits), the element count r should be 0, 1, or absent, t is a character
denoting the datatype of the array data (L, X, B, I, J, etc., but not P), and emax is a
quantity guaranteed to be equal to or greater than the maximum number of elements
of type t actually stored in a table record. There is no built-in upper limit on the size
of a stored array; emax merely reflects the size of the largest array actually stored in
the table, and is provided to avoid the need to preview the table when, for example,
reading a table containing variable length elements into a database that supports only
fixed size arrays. There may be additional characters in the TFORMn keyword following
the emax.

For example,

TFORM8 = ’PB(1800)’ / Variable byte array

indicates that field 8 of the table is a variable length array of type byte, with a maximum
stored array length not to exceed 1800 array elements (bytes in this case).

The data for the variable length arrays in a table is not stored in the actual data
records; it is stored in a special data area, the heap, following the last fixed size data
record. What is stored in the data record is an array descriptor. This consists of two
32-bit integer values: the number of elements (array length) of the stored array, followed
by the zero-indexed byte offset of the first element of the array, measured from the start
of the heap area. Storage for the array is contiguous. The array descriptor for field N
as it would appear embedded in a data record is illustrated symbolically below:

. . . [field N–1] [(nelem,offset)] [field N+1] . . .

If the stored array length is zero there is no array data, and the offset value is
undefined (it should be set to zero). The storage referenced by an array descriptor must
lie entirely within the heap area; negative offsets are not permitted.

NASA/Science Office of Standards and Technology

B.1. “VARIABLE LENGTH ARRAY” FACILITY 59

A binary table containing variable length arrays consists of three principal segments,
as follows:

[table header] [record storage area] [heap area]

The table header consists of one or more 2880-byte FITS logical records with the
last record indicated by the keyword END somewhere in the record. The record storage
area begins with the next 2880-byte logical record following the last header record and
is NAXIS1× NAXIS2 bytes in length. The zero indexed byte offset of the heap measured
from the start of the record storage area is given by the THEAP keyword in the header.
If this keyword is missing the heap is assumed to begin with the byte immediately
following the last data record, otherwise there may be a gap between the last stored
record and the start of the heap. If there is no gap the value of the heap offset is
NAXIS1× NAXIS2. The total length in bytes of the heap area following the last stored
record (gap plus heap) is given by the PCOUNT keyword in the table header.

For example, suppose we have a table containing 5 rows each 168 byte records, with
a heap area 2880 bytes long, beginning at an offset of 2880, thereby aligning the record
storage and heap areas on FITS record boundaries (this alignment is not necessarily
recommended but is useful for our example). The data portion of the table consists of
2 2880-byte FITS records, 840 bytes of which are used by the 5 table records, hence
PCOUNT is 2 × 2880− 840, or 4920 bytes; this is expressed in the table header as:

NAXIS1 = 168 / Width of table row in bytes
NAXIS2 = 5 / Number of rows in table
PCOUNT = 4920 / Random parameter count

...
THEAP = 2880 / Byte offset of heap area

The values of TSCALn and TZEROn for variable length array column entries are to be
applied to the values in the data array in the heap area, not the values of the array
descriptor. These keywords can be used to scale data values in either static or variable
length arrays.

While the above description is sufficient to define the required features of the variable
length array implementation, some hints regarding usage of the variable length array
facility may also be useful.

Programs which read binary tables should take care to not assume more about the
physical layout of the table than is required by the specification. For example, there are
no requirements on the alignment of data within the heap. If efficient runtime access
is a concern one may want to design the table so that data arrays are aligned to the
size of an array element. In another case one might want to minimize storage and forgo
any efforts at alignment (by careful design it is often possible to achieve both goals).

NOST FITS Definition

60 APPENDIX B. PROPOSED BINARY TABLE CONVENTIONS

Variable array data may be stored in the heap in any order, i.e., the data for record
N+1 is not necessarily stored at a larger offset than that for record N . There may be
gaps in the heap where no data is stored. Pointer aliasing is permitted, i.e., the array
descriptors for two or more arrays may point to the same storage location (this could
be used to save storage if two or more arrays are identical).

Byte arrays are a special case because they can be used to store a “typeless” data
sequence. Since FITS is a machine-independent storage format, some form of machine-
specific data conversion (byte swapping, floating point format conversion) is implied
when accessing stored data with types such as integer and floating, but byte arrays are
copied to and from external storage without any form of conversion.

An important feature of variable length arrays is that it is possible that the stored
array length may be zero. This makes it possible to have a column of the table for
which, typically, no data is present in each stored record. When data is present the
stored array can be as large as necessary. This can be useful when storing complex
objects as records in a table.

Accessing a binary table stored on a random access storage medium is straightfor-
ward. Since the data records in the main table are fixed in size they may be randomly
accessed given the record number, by computing the offset. Once the record has been
read in, any variable length array data may be directly accessed using the element count
and offset given by the array descriptor stored in the data record.

Reading a binary table stored on a sequential access storage medium requires that
a table of array descriptors be built up as the main table records are read in. Once all
the table records have been read, the array descriptors are sorted by the offset of the
array data in the heap. As the heap data is read, arrays are extracted sequentially from
the heap and stored in the affected records using the back pointers to the record and
field from the table of array descriptors. Since array aliasing is permitted, it may be
necessary to store a given array in more than one field or record.

Variable length arrays are more complicated than regular static arrays and imply
an extra data access per array to fetch all the data for a record. For this reason, it is
recommended that regular static arrays be used instead of variable length arrays unless
efficiency or other considerations require the use of a variable array.

This facility is still undergoing trials and is not part of the basic binary table defi-
nition.

B.2 “Multidimensional Array” Convention

It is anticipated that binary tables will need to contain data structures more complex
that those describable by the basic notation. Examples of these are multidimensional
arrays and nonrectangular data structures. Suitable conventions may be defined to pass

NASA/Science Office of Standards and Technology

B.3. “SUBSTRING ARRAY” CONVENTION 61

these structures using some combination of keyword/value pairs and table entries to
pass the parameters of these structures.

One case, multidimensional arrays, is so common that it is prudent to describe a
simple convention. The “Multidimensional array” convention consists of the following:
any column with a dimensionality of 2 or larger will have an associated character key-
word TDIMn =’(l,m,n...)’ where l, m, n,. . . are the dimensions of the array. The
data is ordered such that the array index of the first dimension given (l) is the most
rapidly varying and that of the last dimension given is the least rapidly varying. The
size implied by the TDIMn keyword will equal the element count specified in the TFORMn
keyword. The adherence to this convention will be indicated by the presence of a TDIMn
keyword in the form described above.

A character string is represented in a binary table by a one-dimensional character
array, as described under “Character” in the list of datatypes in §8.3.3.1 (“Main Data
Table ”). For example, a Fortran 77 CHARACTER*20 variable could be represented in
a binary table as a character array declared as TFORMn = ’20A ’. Arrays of
character strings, i.e., multidimensional character arrays, may be represented using
the TDIMn notation. For example, if TFORMn = ’60A ’ and TDIMn = ’(5,4,3)’,
then the entry consists of a 4 × 3 array of strings of 5 characters each. (Variable
length character strings are allowed by the convention described in Appendix B.3. One
dimensional arrays of strings should use the convention in Appendix B.3 rather than
the “Multidimensional Array” convention.)

This convention is optional and will not preclude other conventions. This convention
is not part of the binary table definition.

B.3 “Substring Array” Convention

This appendix describes a layered convention for specifying that a character array field
(TFORMn = ’rA ’) consists of an array of either fixed-length or variable-length sub-
strings within the field. This convention utilizes the option described in the basic binary
table definition to have additional characters following the datatype code character in
the TFORMn value field. The full form for the value of TFORMn within this convention is

’rA:SSTRw/nnn’

and a simpler form that may be used for fixed-length substrings only is

’rAw’

where

r is an integer giving the total length including any delimiters (in characters)
of the field,

NOST FITS Definition

62 APPENDIX B. PROPOSED BINARY TABLE CONVENTIONS

A signifies that this is a character array field,
: indicates that a convention indicator follows,
SSTR indicates the use of the “Substring Array” convention,
w is an integer ≤ r giving the (maximum) number of characters in an indi-

vidual substring (not including the delimiter), and
/nnn if present, indicates that the substrings have variable-length and are

delimited by an ASCII text character with decimal value nnn in the
range 032 to 126 decimal, inclusive. This character is referred to as the
delimiter character. The delimiter character for the last substring will
be an ASCII NUL.

To illustrate this usage:

’40A:SSTR8’ signifies that the field is 40 characters wide and consists of
an array of 5 8-character fixed-length substrings. This could also be
expressed using the simpler form as ’40A8’

’100A:SSTR8/032’ signifies that the field is 100 characters wide and con-
sists of an array of variable-length substrings where each substring has
a maximum length of 8 characters and, except for the last substring, is
terminated by an ASCII SPACE (decimal 32) character.

Note that simple FITS readers that do not understand this substring convention
can ignore the TFORM characters following the rA and can interpret the field simply as a
single long string as described in the basic binary table definition.

The following rules complete the full definition of this convention:

1. In the case of fixed-length substrings, if r is not an integer multiple of w then the
remaining odd characters are undefined and should be ignored. For example if
TFORMn =’14A:SSTR3’, then the field contains 4 3-character substrings followed
by 2 undefined characters.

2. Fixed-length substrings must always be padded with blanks if they do not other-
wise fill the fixed-length subfield. The ASCII NUL character must not be used to
terminate a fixed-length substring field.

3. The character following the delimiter character in variable-length substrings is the
first character of the following substring.

4. The method of signifying an undefined or null substring within a fixed-length
substring array is not explicitly defined by this convention (note that there is no
ambiguity if the variable-length format is used). In most cases it is recommended
that a completely blank substring or other adopted convention (e.g. ’INDEF’) be
used for this purpose although general readers are not expected to recognize these

NASA/Science Office of Standards and Technology

B.3. “SUBSTRING ARRAY” CONVENTION 63

as undefined strings. In cases where it is necessary to make a distinction between
a blank, or other, substring and an undefined substring use of variable-length
substrings is recommended.

5. Undefined or null variable-length substrings are designated by a zero-length sub-
string, i.e., by a delimiter character (or an ASCII NUL if it is the last substring in
the table field) in the first position of the substring. An ASCII NUL in the first
character of the table field indicates that the field contains no defined variable-
length substrings.

6. The “Multidimensional Array”convention described in Appendix B.2 of this pa-
per provides a syntax using the TDIMn keyword for describing multidimensional
arrays of any datatype which can also be used to represent arrays of fixed-length
substrings. For a one dimensional array of substrings (a two dimensional array
of characters) the “Substring Array” convention is preferred over the “Multidi-
mensional Array” convention. Multidimensional arrays of (fixed length) strings
require the use of the “Multidimensional Array” convention.

7. This substring convention may be used in conjunction with the “Variable Length
Array” facility described in Appendix B.1 of this paper. In this case, the two
possible full forms for the value of the TFORM keyword are

TFORMn = ’rPA(emax):SSTRw/nnn’

and

TFORMn = ’rPA(emax):SSTRw’

for the variable and fixed cases, respectively.

This convention is optional and will not preclude other conventions. This convention
is not part of the binary table definition.

NOST FITS Definition

64 APPENDIX B. PROPOSED BINARY TABLE CONVENTIONS

NASA/Science Office of Standards and Technology

65

Appendix C

Implementation on Physical
Media

(This Appendix is not part of the NOST FITS Standard, but is included as a guide to
recommended practices.)

C.1 Physical Properties of Media

The arrangement of digital bits and other physical properties of any medium should
be in conformance with the relevant national and/or international standard for that
medium.

C.2 Labeling

C.2.1 Tape

Tapes may be either ANSI standard labeled or unlabeled. Unlabeled tapes are preferred.

C.2.2 Other Media

Conventions regarding labels for physical media containing FITS files have not been
established for other media.

C.3 FITS File Boundaries

C.3.1 Magnetic Reel Tape

Individual FITS files are terminated by a tape-mark.

NOST FITS Definition

66 APPENDIX C. IMPLEMENTATION ON PHYSICAL MEDIA

C.3.2 Other Media

For fixed block length sequential media where the physical block size cannot be equal
to or an integral multiple of the standard FITS logical record length, a logical record of
fewer than 23040 bits (2880 8-bit bytes) immediately following the end of the primary
header, data, or an extension should be treated as an end-of-file. Otherwise, individual
FITS files should be terminated by a delimiter appropriate to the medium, analogous
to the tape end-of-file mark. If more than one FITS file appears on a physical structure,
the appropriate end-of-file indicator should immediately precede the start of the primary
headers of all files after the first.

C.4 Multiple Physical Volumes

Storage of a single FITS file on more than one unlabeled tape or on multiple units of
any other medium is not universally supported in FITS. One possible way to handle
multivolume unlabeled tape was suggested in [1]. A convention for logically grouping
on-line FITS HDUs that may physically be located in different sites has been proposed
in [16].

NASA/Science Office of Standards and Technology

67

Appendix D

Suggested Time Scale
Specification

[Not part of formal DATExxxx agreement]

1. Use of the keyword TIMESYS is suggested as an implementation of the time scale
specification. It sets the principal time system for time-related keywords and data
in the HDU (i.e., it does not preclude the addition of keywords or data columns
that provide information for transformations to other time scales, such as sidereal
times or barycenter corrections). Each HDU shall contain not more than one
TIMESYS keyword. Initially, officially allowed values are:

UTC Coordinated Universal Time; defined since 1972.

UT Universal Time, equal to Greenwich Mean Time (GMT) since 1925; the UTC
equivalent before 1972; see: Explanatory Supplement, p. 76.

TAI International Atomic Time; “UTC without the leap seconds”; 31 s ahead of
UTC on 1997-07-01.

AT International Atomic Time; deprecated synonym of TAI.

ET Ephemeris Time, the predecessor of TT; valid until 1984.

TT Terrestrial Time, the IAU standard time scale since 1984; continuous with ET
and synchronous with (but 32.184 s ahead of) TAI.

TDT Terrestrial Dynamical Time; = TT.

TDB Barycentric Dynamical Time.

TCG Geocentric Coordinate Time; runs ahead of TT since 1977-01-01 at a rate of
approximately 22 ms/year.

TCB Barycentric Coordinate Time; runs ahead of TDB since 1977-01-01 at a rate
of approximately 0.5 s/year.

NOST FITS Definition

68 APPENDIX D. SUGGESTED TIME SCALE SPECIFICATION

For reference, see: Explanatory Supplement to the Astronomical Almanac, P. K.
Seidelmann, ed., University Science Books, 1992, ISBN 0-935702-68-7, or

http://tycho.usno.navy.mil/systime.html

Use of Global Positioning Satellite (GPS) time (19 s behind TAI) is deprecated.

2. By default, times will be deemed to be as measured at the detector (or in practical
cases, at the observatory) for times that run synchronously with TAI (i.e., TAI,
UTC, and TT). In the case of coordinate times (such as TCG and TCB) and TDB
which are tied to an unambiguous coordinate origin, the default meaning of time
values will be: time as if the observation had taken place at the origin of the coor-
dinate time system. These defaults follow common practice; a future convention
on time scale issues in FITS files may allow other combinations but shall preserve
this default behavior. The rationale is that raw observational data are most likely
to be tagged by a clock that is synchronized with TAI, while a transformation to
coordinate times or TDB is usually accompanied by a spatial transformation, as
well. This implies that path length differences have been corrected for. Note that
the difference TDB − UTC, in that case, is approximately sinusoidal, with period
one year and amplitude up to 500 s, depending on source position. Also, note
that when the location is not unambiguous (such as in the case of an interferom-
eter) precise specification of the location is strongly encouraged in, for instance,
geocentric Cartesian coordinates.

3. Note that TT is the IAU preferred standard. It may be considered equivalent to
TDT and ET, though ET should not be used for data taken after 1984. For reference,
see: Explanatory Supplement, pp. 40-48.

4. If the TIMESYS keyword is absent or has an unrecognized value, the value UTC will
be assumed for dates since 1972, and UT for pre-1972 data.

5. Examples. The three legal representations of the date of October 14, 1996, might
be written as:

DATE-OBS= ’14/10/96’ / Original format, means 1996 Oct 14.

TIMESYS = ’UTC ’ / Explicit time scale specification: UTC.

DATE-OBS= ’1996-10-14’ / Date of start of observation in UTC.

DATE-OBS= ’1996-10-14’ / Date of start of observation, also in UTC.

TIMESYS = ’TT ’ / Explicit time scale specification: TT.

DATE-OBS= ’1996-10-14T10:14:36.123’ / Date and time of start of obs. in TT.

NASA/Science Office of Standards and Technology

69

6. The convention suggested in this Appendix is part of the mission-specific FITS
conventions adopted for, and used in, the RXTE archive, building on existing
High Energy Astrophysics FITS conventions. See:

http://heasarc.gsfc.nasa.gov/docs/xte/abc/time tutorial.html
http://heasarc.gsfc.nasa.gov/docs/xte/abc/time.html

The VLBA project has adopted a convention where the keyword TIMSYS, rather
than TIMESYS, is used, currently allowing the values UTC and IAT. See p. 9 and
p. 16 of:

http://www.cv.nrao.edu/fits/documents/drafts/vlba format.ps

NOST FITS Definition

70 APPENDIX D. SUGGESTED TIME SCALE SPECIFICATION

NASA/Science Office of Standards and Technology

71

Appendix E

Differences from IAU-endorsed
Publications

(This Appendix is not part of the NOST FITS Standard but is included for informa-
tional purposes only.)

Note: In this discussion, the term the FITS papers refers to [1], [2], [4], [5], [9],
and [10] collectively, the term Floating Point Agreement (FPA) refers to [8], the term
Blocking Agreement refers to [11]; and the term DATExxxx Agreement refers to the
redefinition of the value format for date keywords approved by the IAUFWG in 1997.

1. §3 — Definitions, Acronyms, and Symbols

Array value — This precise definition is not used in the original FITS papers.

ASCII text — This permissible subset of the ASCII character set, used in many
contexts, is not precisely defined in the FITS papers.

Basic FITS — This definition includes the possibility of floating point data ar-
rays, while the terminology in the FITS papers refers to FITS as described
in [1], where only integer arrays were possible.

Conforming Extension — This terminology is not used in the FITS papers.

Deprecate — The concept of deprecation does not appear in the FITS papers.

FITS structure — This terminology is not used in the FITS papers in the
precise way that it is in this standard.

Fraction — This terminology and the distinction between fraction and mantissa
do not appear in the Floating Point Agreement.

Header and Data Unit — This terminology is not used in the FITS papers.

Indexed keyword — This terminology is not used in the original FITS papers.

Physical value — This precise definition is not used in the original FITS papers.

NOST FITS Definition

72
APPENDIX E. DIFFERENCES FROM IAU-ENDORSED

PUBLICATIONS

Reference point — This term replaces the reference pixel of the FITS papers.
The new terminology is consistent with the fact that the array need not
represent a digital image and that the reference point (or pixel) need not lie
within the array.

Repeat count —This terminology is not used in the FITS papers.
Reserved keyword — The FITS papers describe optional keywords but do not

say explicitly that they are reserved.
Standard Extension — This precise definition is new. The term standard ex-

tension is used in some contexts in the FITS papers to refer to what this
standard defines as a standard extension and in others to refer to what this
standard defines as conforming extension.

2. §4.3.2 Primary Data Array
Fill format — This specification is new. The FITS papers and the FPA do not
precisely specify the format of data fill for the primary data array.

3. §4.4.1.1 Identity (of conforming extensions)
The FITS papers specify that creators of new extension types should check with
the FITS standards committee. This standard identifies the committee specifi-
cally, introduces the role of the FITS Support Office as its agent, and mandates
registration.

4. §4.6 Physical Blocking
This material is based entirely on the Blocking Agreement. Material in the early
FITS papers [1,4] specifying the expression of FITS on specific physical media is
not part of this standard.

5. §4.6.1 Bitstream Devices
The Blocking Agreement specifies that this rule applies to FITS files written to
logical file systems. This standard applies the rule to all bitstream devices, not
only logical file systems.

6. §4.6.2.1 Fixed Block
The Blocking Agreement specifies that this rule applies to FITS files written
to optical disks, (accessed as a sequential set of records), QIC format 1/4-inch
cartridge tapes and Local Area networks. This standard extends the rule to other
fixed block length sequential media.

7. §4.6.2.2 Variable Block
The Blocking Agreement specifies that this rule applies to FITS files written to
1/2-inch 9 track tapes, DDS/DAT 4mm cartridge tapes and 8mm cartridge tape
(Exabyte). This standard extends the rule to all variable block length sequential
media and eliminates references to specific products.

NASA/Science Office of Standards and Technology

73

8. §5.1.2.1 Keyword (as header component)
The specification of permissible keyword characters is new. The FITS papers do
not precisely define the permissible characters for keywords.

9. §5.1.2.2 Value Indicator (bytes 9–10)
The FITS papers do not specifically address the permissibility of null values. This
standard states explicitly that they are permitted.

10. §5.1.2.3 Value/Comment (bytes 11–80)
In the FITS papers, the slash between the value and comment is optional. This
standard requires the slash, consistent with the prescription of FORTRAN-77
list-directed input.

11. §5.2 Value, including its subsections
The FITS papers specify that the value field is to be written following the rules
of ANSI FORTRAN-77 list-directed input, with some restrictions. This standard
explicitly describes the format of the value field. The FITS papers permit the
value field to contain an array of values. This standard specifies that there shall
be only one value in the value field. The FITS papers require the fixed format for
the most essential parameters. This standard identifies those parameters with the
values of the mandatory keywords.

12. §5.2.1 Character String
The standard explicitly describes how single quotes are to be coded into keyword
values, a rule only implied by the FORTRAN-77 list-directed read requirements
of the FITS papers.

The standard states that in general, character-valued keywords can have lengths
up to the maximum 68 character length.

13. §5.2.3 Integer
The standard explicitly notes that the fixed format for complex integers does not
conform to the rules for ANSI FORTRAN list-directed read.

14. §5.2.4 Real Floating Point Number
The standard explicitly notes that the full precision of 64-bit values cannot be
expressed as a single value using the fixed format.

15. §5.2.5 Complex Integer Number
The standard does not support the fixed format for complex integers defined in the
FITS papers but is consistent with FORTRAN-77 list-directed read as required
in the FITS papers for free format. Because the fixed format of the FITS papers
did not conform to the rules for FORTRAN-77 list-directed I/O, consistency with
both was impossible. There are no known FITS files that use the fixed format for
complex integers that was defined in the FITS papers.

NOST FITS Definition

74
APPENDIX E. DIFFERENCES FROM IAU-ENDORSED

PUBLICATIONS

16. §5.2.6 Complex Floating Point Number
The standard does not support the fixed format for complex floating point numbers
defined in the FITS papers but is consistent with FORTRAN-77 list-directed read
as required in the FITS papers for free format. Because the fixed format of the
FITS papers did not conform to the rules for FORTRAN-77 list-directed I/O,
consistency with both was impossible. There are no known FITS files that use
the fixed format for complex floating point numbers that was defined in the FITS
papers.

17. §5.3 Units
The FITS papers recommend the use of SI units and identify certain other units
standard in astronomy. This standard codifies the recommendation and makes it
more specific by referring to the IAU Style Manual [7], while explicitly recommend-
ing degrees for angular measure and requiring degrees for celestial coordinates.

18. §5.4.1.1 Principal (mandatory keywords)

(a) SIMPLE keyword — The explicit prohibition against the appearance of the
SIMPLE keyword in extensions does not appear in the FITS papers.

(b) NAXIS keyword — The requirement that the NAXIS keyword may not be
negative is not explicitly specified in the FITS papers.

(c) NAXISn keyword — The requirement that the NAXISn keyword may not be
negative is not explicitly specified in the FITS papers.

19. §5.4.1.2 Conforming Extensions

(a) Nbits — The requirement that Nbits may not be negative is not explicitly
specified in the FITS papers.

(b) XTENSION keyword — That this keyword may not appear in the primary
header is only implied by the FITS papers; the prohibition is explicit in
this standard. The FITS papers name a FITS standards committee as the
keeper of the list of accepted extension type names. This standard specifically
identifies the committee and introduces the role of the FITS Support Office
as its agent.

20. §5.4.2 Other Reserved Keywords
That the optional keywords defined in the FITS papers are to be reserved for both
the primary HDUs and all extensions with the meanings and usage defined in those
papers, as in the standard, is not explicitly stated in all of them, although some
keywords are explicitly reserved in the papers describing the image and binary
table extensions.

NASA/Science Office of Standards and Technology

75

21. §5.4.2.1 Keywords Describing the History or Physical Construction of the HDU

(a) DATE Keyword — The notation for four-digit year number is YYYY rather
than the CCYY of the “DATExxxx Agreement”. The recommendation for use
of Universal Time in the superseded format with a two-digit year is not in
the FITS papers.

(b) BLOCKED keyword — The FITS papers require the BLOCKED keyword to ap-
pear in the first record of the primary header even though it cannot when
the value of NAXIS exceeds the values described in the text. They do not
address this contradiction. This standard deprecates the BLOCKED keyword.

22. §5.4.2.2 Keywords Describing Observations

(a) DATE-OBS Keyword — The recommendation for use of Universal Time in the
superseded format with a two-digit year is not in the FITS papers.

(b) EQUINOX and EPOCH keywords — This standard replaces the EPOCH keyword
with the more appropriately named EQUINOX keyword and deprecates the
EPOCH name.

23. §5.4.2.4 Commentary keywords
Keyword field is blank — Reference [1] contains the text “BLANK” to represent a
blank keyword field. The standard clarifies the intention.

24. §5.4.2.5 Array keywords

(a) BUNIT Keyword — The FITS papers recommend the use of SI units, degrees
as the appropriate unit for angles, and identify other units standard in as-
tronomy. This standard specically applies the recommendations of §5.3 to
the BUNIT keyword.

(b) CTYPEn, CRVALn, CDELTn, and CROTAn Keywords — This standard extends
the recommendations on units to coordinate axes, explicitly requiring decimal
degrees for coordinates.

(c) CRPIXn Keywords — This standard explicitly notes the ambiguity in the
location of the index number relative to an image pixel.

(d) CDELTn Keywords — The definition in the standard differs from that in the
FITS papers in that it provides for the case where the spacing between index
points varies over the grid. For the case of constant spacing, it is identical to
the specification in the FITS papers.

(e) DATAMAX and DATAMIN Keywords — The standard clarifies that the value
refers to the physical value represented by the array, after any scaling, not

NOST FITS Definition

76
APPENDIX E. DIFFERENCES FROM IAU-ENDORSED

PUBLICATIONS

the array value before scaling. The standard also notes that special values are
not to be considered when determining the values of DATAMAX and DATAMIN,
an issue not specifically addressed by the FITS papers or the FPA.

25. §7 Random Groups Structure
The standard deprecates the Random Groups structure.

26. §7.1.2 Reserved Keywords (random groups)
That the optional keywords defined in the FITS papers are to be reserved with the
meanings and usage defined in those papers, as in the standard, is not explicitly
stated in them.

27. §7.1.2.2 PSCALn Keywords — The default value is explicitly specified in the stan-
dard, whereas in the FITS papers it is assumed by analogy with the BSCALE
keyword.

28. §7.1.2.3 PZEROn Keywords — The default value is explicitly specified in the stan-
dard, whereas in the FITS papers it is assumed by analogy with the BZERO key-
word.

29. §8.1 ASCII Table Extension
The name ASCII table is given to the “tables” extension discussed in the FITS
papers to distinguish it from the binary table extension.

30. §8.1.1 Mandatory Keywords (ASCII table)

(a) NAXIS1 keyword — The requirement that the NAXIS1 keyword may not be
negative in an ASCII table header is not explicitly specified in the FITS
papers.

(b) NAXIS2 keyword — The requirement that the NAXIS2 keyword may not be
negative in an ASCII table header is not explicitly specified in the FITS
papers.

(c) TFIELDS keyword — The requirement that the TFIELDS keyword may not be
negative is not explicitly specified in the FITS papers.

(d) TFORMn keyword — The requirement that format codes must be specified in
upper case is implied but not explicitly specified in the FITS papers.

31. §8.1.2 Other Reserved Keywords (ASCII table)
That the optional keywords defined in the FITS papers are to be reserved with the
meanings and usage defined in those papers, as in the standard, is not explicitly
stated in them.

NASA/Science Office of Standards and Technology

77

(a) TUNITn Keywords — The FITS papers do not explicitly recommend the use
of any particular units for this keyword, although the reference to the BUNIT
keyword may be considered an implicit extension of the recommendation for
that keyword. This standard makes the recommendation more specific for
the TUNITn keyword by requiring conformance to the prescriptions in §5.3.

(b) TSCALn Keywords — The prohibition against use in A-format fields is stronger
than the statement in the FITS papers that the keyword “is not relevant”.

(c) TZEROn Keywords — The prohibition against use in A-format fields is stronger
than the statement in the FITS papers that the keyword “is not relevant”.

32. §8.3.2 Other Reserved Keywords (Binary Table)
The EXTNAME, EXTVER, EXTLEVEL, AUTHOR, and REFERENC keywords explicitly re-
served for binary tables in the defining paper are reserved in the standard under
the general prescription of §5.4.2.

(a) TUNITn Keywords — The FITS papers do not explicitly recommend the use
of any particular units for this keyword. This standard makes the recom-
mendation more specific for the TUNITn keyword by requiring conformance
to the prescriptions of §5.3.

(b) TDISPn Keywords — The version of the BINTABLE paper upon which the
FITS committees voted stated incorrectly that the values used to display bit
and byte arrays should be considered signed. This standard follows the text
in the published BINTABLE paper, which specifies that these values should be
unsigned. The BINTABLE paper does not specify how a TDISPn value for a field
of type P is interpreted; this standard explicitly mandates no interpretation
but allows conventions to provide interpretations. The requirement that
format codes must be specified in upper case is implied but not explicitly
specified in the BINTABLE paper.

(c) THEAP Keywords — The FITS papers state only that the keyword is reserved
for use in the convention described in in Appendix B.1. This standard makes
the more specific statement that this keyword is used to provide the separa-
tion, in bytes, between the start of the main data table and the start of a
supplemental data area called the heap and identifies the default value.

(d) TDIMn Keywords — The FITS papers state only that the keyword is reserved
for use in the convention described in Appendix B.2. This standard makes the
more specific statement that the contents of the value field contain a character
string describing how to interpret the contents of a field as a multidimensional
array.

33. §8.3.4 Data Display
The BINTABLE paper suggests that the format for display suggested by the TDISPn

NOST FITS Definition

78
APPENDIX E. DIFFERENCES FROM IAU-ENDORSED

PUBLICATIONS

should be understood as a Fortran-90 format or, where Fortran-90 is unavailable,
a FORTRAN-77 format. This standard explicitly describes the formats. The
statement in the standard concerning differences between E and D format codes,
which notes that the latter implies greater precision in the internal datum, does
not appear in the BINTABLE paper.

34. §9 Restrictions on Changes
The FITS papers do not provide for the concept of deprecation.

35. Appendix C Implementation on Physical Media
Material in the FITS papers specifying the expression of FITS on specific physical
media is not part of this standard; what is provided in the appendix is purely as
a guide to recommended practices.

NASA/Science Office of Standards and Technology

79

Appendix F

Summary of Keywords

(This Appendix is not part of the NOST FITS Standard, but is included for convenient
reference).

Principal Conforming ASCII Table Image Binary Table Random Groups
HDU Extension Extension Extension Extension Records

SIMPLE XTENSION XTENSION1 XTENSION2 XTENSION3 SIMPLE
BITPIX BITPIX BITPIX = 8 BITPIX BITPIX = 8 BITPIX
NAXIS NAXIS NAXIS = 2 NAXIS NAXIS = 2 NAXIS
NAXISn4 NAXISn4 NAXIS1 NAXISn4 NAXIS1 NAXIS1 = 0
EXTEND5 PCOUNT NAXIS2 PCOUNT = 0 NAXIS2 NAXISn4

END GCOUNT PCOUNT = 0 GCOUNT = 1 PCOUNT GROUPS = T
END GCOUNT = 1 END GCOUNT = 1 PCOUNT

TFIELDS TFIELDS GCOUNT
TBCOLn6 TFORMn6 END
TFORMn6 END
END

1 XTENSION= ’TABLE ’ for the ASCII table extension.
2 XTENSION= ’IMAGE ’ for the image extension.
3 XTENSION= ’BINTABLE’ for the binary table extension.
4 Runs from 1 through the value of NAXIS.
5 Required only if extensions are present.
6 Runs from 1 through the value of TFIELDS.

Table F.1: Mandatory FITS keywords for the structures described in this document.

NOST FITS Definition

80 APPENDIX F. SUMMARY OF KEYWORDS

All Array1 Conforming ASCII Table Binary Table Random Groups
HDUs HDUs Extension Extension Extension Records

DATE BSCALE EXTNAME TSCALn TSCALn PTYPEn
ORIGIN BZERO EXTVER TZEROn TZEROn PSCALn
BLOCKED2 BUNIT EXTLEVEL TNULLn TNULLn PZEROn
AUTHOR BLANK TTYPEn TTYPEn
REFERENC CTYPEn TUNITn TUNITn
COMMENT CRPIXn TDISPn
HISTORY CROTAn TDIMn
 CRVALn THEAP
DATE-OBS CDELTn
TELESCOP DATAMAX
INSTRUME DATAMIN
OBSERVER
OBJECT
EQUINOX
EPOCH2

1 Primary HDU, image extension, user-defined HDUs with same array structure.
2 Deprecated.

Table F.2: Reserved FITS keywords for the structures described in this document.

Production Bibliographic Commentary Observation
DATE AUTHOR COMMENT DATE-OBS
ORIGIN REFERENC HISTORY TELESCOP
BLOCKED1 INSTRUME

OBSERVER
OBJECT
EQUINOX
EPOCH1

1 Deprecated.

Table F.3: General reserved FITS keywords described in this document.

NASA/Science Office of Standards and Technology

81

Appendix G

ASCII Text

(This appendix is not part of the NOST FITS standard; the material in it is based on
the ANSI standard for ASCII [14] and is included here for informational purposes.)

In the following table, the first column is the decimal and the second column the
hexadecimal value for the character in the third column. The characters hexadecimal 20
to 7E (decimal 32 to 126) constitute the subset referred to in this document as ASCII
text.

NOST FITS Definition

82 APPENDIX G. ASCII TEXT

ASCII Control ASCII Text
dec hex char dec hex char dec hex char dec hex char
0 00 NUL 32 20 SP 64 40 @ 96 60 ‘
1 01 SOH 33 21 ! 65 41 A 97 61 a
2 02 STX 34 22 " 66 42 B 98 62 b
3 03 ETX 35 23 # 67 43 C 99 63 c
4 04 EOT 36 24 $ 68 44 D 100 64 d
5 05 ENQ 37 25 % 69 45 E 101 65 e
6 06 ACK 38 26 & 70 46 F 102 66 f
7 07 BEL 39 27 ’ 71 47 G 103 67 g
8 08 BS 40 28 (72 48 H 104 68 h
9 09 HT 41 29) 73 49 I 105 69 i
10 0A LF 42 2A * 74 4A J 106 6A j
11 0B VT 43 2B + 75 4B K 107 6B k
12 0C FF 44 2C , 76 4C L 108 6C l
13 0D CR 45 2D - 77 4D M 109 6D m
14 0E SO 46 2E . 78 4E N 110 6E n
15 0F SI 47 2F / 79 4F O 111 6F o
16 10 DLE 48 30 0 80 50 P 112 70 p
17 11 DC1 49 31 1 81 51 Q 113 71 q
18 12 DC2 50 32 2 82 52 R 114 72 r
19 13 DC3 51 33 3 83 53 S 115 73 s
20 14 DC4 52 34 4 84 54 T 116 74 t
21 15 NAK 53 35 5 85 55 U 117 75 u
22 16 SYN 54 36 6 86 56 V 118 76 v
23 17 ETB 55 37 7 87 57 W 119 77 w
24 18 CAN 56 38 8 88 58 X 120 78 x
25 19 EM 57 39 9 89 59 Y 121 79 y
26 1A SUB 58 3A : 90 5A Z 122 7A z
27 1B ESC 59 3B ; 91 5B [123 7B {
28 1C FS 60 3C < 92 5C \ 124 7C |
29 1D GS 61 3D = 93 5D] 125 7D }
30 1E RS 62 3E > 94 5E ^ 126 7E ~
31 1F US 63 3F ? 95 5F _ 127 7F DEL1

1 Not ASCII Text

Table G.1: ASCII character set

NASA/Science Office of Standards and Technology

83

Appendix H

IEEE Floating Point Formats

(The material in this Appendix is not part of this standard; it is adapted from the
IEEE-754 floating point standard [15] and provided for informational purposes. It is
not intended to be a comprehensive description of the IEEE formats; readers should
refer to the IEEE standard.)

FITS recognizes all IEEE basic formats, including the special values.

H.1 Basic Formats

Numbers in the single and double formats are composed of the following three fields:

1. 1-bit sign s

2. Biased exponent e = E + bias

3. Fraction f = •b1b2 · · · bp−1

The range of the unbiased exponent E shall include every integer between two values
Emin and Emax, inclusive, and also two other reserved values Emin − 1 to encode ±0
and denormalized numbers, and Emax+1 to encode ±∞ and NaNs. The foregoing
parameters are given in Table H.1. Each nonzero numerical value has just one encoding.
The fields are interpreted as follows:

H.1.1 Single

A 32-bit single format number X is divided as shown in Fig. H.1. The value v of X is
inferred from its constituent fields thus

1. If e = 255 and f 6= 0, then v is NaN regardless of s

2. If e = 255 and f = 0, then v = (−1)s∞

NOST FITS Definition

84 APPENDIX H. IEEE FLOATING POINT FORMATS

Format
Parameter Single Double

Single Extended Double Extended
p 24 ≥ 32 53 ≥ 64
Emax +127 ≥ +1023 +1023 ≥ +16383
Emin −126 ≤ −1022 −1022 ≤ −16382
Exponent bias +127 unspecified +1023 unspecified
Exponent width in bits 8 ≥ 11 11 ≥ 15
Format width in bits 32 ≥ 43 64 ≥ 79

Table H.1: Summary of Format Parameters

3. If 0 < e < 255, then v = (−1)s2e−127(1 • f)

4. If e = 0 and f 6= 0, then v = (−1)s2e−126(0 • f) (denormalized numbers)

5. If e = 0 and f = 0, then v = (−1)s0 (zero)

msb lsb msb lsb

2381

s te

. . . . widths

. . . . order

Figure H.1: Single Format. msb means most significant bit, lsb means least significant
bit

H.1.2 Double

A 64-bit double format number X is divided as shown in Fig. H.2. The value v of X is
inferred from its constituent fields thus

1. If e = 2047 and f 6= 0, then v is NaN regardless of s

2. If e = 2047 and f = 0, then v = (−1)s∞
3. If 0 < e < 2047, then v = (−1)s2e−1023(1 • f)

4. If e = 0 and f 6= 0, then v = (−1)s2e−1022(0 • f) (denormalized numbers)

NASA/Science Office of Standards and Technology

H.2. BYTE PATTERNS 85

5. If e = 0 and f = 0, then v = (−1)s0 (zero)

msb

1

s

msblsb lsb

e t

11 52 widths

. . . . order

Figure H.2: Double Format. msb means most significant bit, lsb means least significant
bit

H.2 Byte Patterns

Table H.2 shows the types of IEEE floating point value, whether regular or special,
corresponding to all double and single precision hexadecimal byte patterns.

NOST FITS Definition

86 APPENDIX H. IEEE FLOATING POINT FORMATS

IEEE value Double Precision Single Precision
+0 0000000000000000 00000000
denormalized 0000000000000001 00000001

to to
000FFFFFFFFFFFFF 007FFFFF

positive underflow 0010000000000000 00800000
positive numbers 0010000000000001 00800001

to to
7FEFFFFFFFFFFFFE 7F7FFFFE

positive overflow 7FEFFFFFFFFFFFFF 7F7FFFFF
+∞ 7FF0000000000000 7F800000
NaN1 7FF0000000000001 7F800001

to to
7FFFFFFFFFFFFFFF 7FFFFFFF

−0 8000000000000000 80000000
negative 8000000000000001 80000001
denormalized to to

800FFFFFFFFFFFFF 807FFFFF
negative underflow 8010000000000000 80800000
negative numbers 8010000000000001 80800001

to to
FFEFFFFFFFFFFFFE FF7FFFFE

negative overflow FFEFFFFFFFFFFFFF FF7FFFFF
−∞ FFF0000000000000 FF800000
NaN1 FFF0000000000001 FF800001

to to
FFFFFFFFFFFFFFFF FFFFFFFF

1 Certain values may be designated as quiet NaN (no diagnostic when used) or signaling
(produces diagnostic when used) by particular implementations.

Table H.2: IEEE Floating Point Formats

NASA/Science Office of Standards and Technology

87

Appendix I

Reserved Extension Type Names

(This Appendix is not part of the NOST FITS Standard, but is included for informa-
tional purposes. It describes the extension type names registered as of the date this
standard was issued.) A current list is available from the FITS Support Office at

http://fits.gsfc.nasa.gov/xtension.html

or

ftp://nssdc.gsfc.nasa.gov/pub/fits/xtension.lis

NOST FITS Definition

88 APPENDIX I. RESERVED EXTENSION TYPE NAMES

Type Name Status Reference Sponsor Comments
’A3DTABLE’ L [17] NRAO Prototype binary table design used

in AIPS; subset of BINTABLE.

’BINTABLE’ S [10] IAU Binary table extension.
Available at FITS Archives in files
/documents/standards/bintable.aa*
of 1995-Feb-06. Note: only main
document, excluding appendixes.

’COMPRESS’ R none GSFC Suggested extension name by
A/WWW A. Warnock. Preliminary proposal

in FITS archives in the
files compress.*.

’DUMP ’ R none none Suggested extension name for
binary dumps.
No full proposal submitted.

’FILEMARK’ R none NRAO Suggested for equivalent
of tape mark on other media.
No full proposal submitted.

’IMAGE ’ S [9] IAU Image extension.

’IUEIMAGE’ L [18] IUE Local extension originally
defined for archiving
special IUE data products,
Identical to IMAGE.

’TABLE ’ S [5] IAU ASCII table extension.

’VGROUP ’ R none GSFC Suggested extension name for
HDF Vgroups (D. Jennings)
No formal proposal; not used in
current HDF-FITS
conversion proposals

Table I.1: Reserved Extension Type Names

NASA/Science Office of Standards and Technology

89

Code Significance
D Draft extension proposal for discussion by regional FITS committees.
L Local FITS extension.
P Proposed FITS extension approved by regional FITS committees

but not by IAU FITS Working Group.
R Reserved type name for which a full draft proposal has not been submitted.
S Standard extension approved by IAU FITS Working Group and

endorsed by the IAU.

Table I.2: Status Codes

Acronym Meaning
NRAO National Radio Astronomy Observatory
AIPS Astronomical Image Processing System
A/WWW A/WWW Enterprises
HDF Hierarchical Data Format

Table I.3: Acronyms in List of Registered Extensions

NOST FITS Definition

90 APPENDIX I. RESERVED EXTENSION TYPE NAMES

NASA/Science Office of Standards and Technology

91

Appendix J

NOST Publications

Document Title Date Status
NOST 100-0.1 FITS Standard December, 1990 Draft Standard

NOST 100-0.2 FITS Implementation Standard June, 1991 Revised Draft Standard
NOST 100-0.3 FITS Implementation Standard December, 1991 Revised Draft Standard
NOST 100-1.0 FITS Definition Standard March, 1993 Proposed Standard
NOST 100-1.0 FITS Definition Standard June, 1993 NOST Standard
NOST 100-1.1 FITS Definition Standard June, 1995 Proposed Standard
NOST 100-1.1 FITS Definition Standard September, 1995 NOST Standard
NOST 100-1.2 FITS Definition Standard April, 1998 Draft Standard
NOST 100-2.0 FITS Definition Standard March, 1999 NOST Standard

Table J.1: NOST Publications

NOST FITS Definition

92 APPENDIX J. NOST PUBLICATIONS

NASA/Science Office of Standards and Technology

INDEX 93

Index

Nbits, 19, 21, 31, 74
TABLE, extension, 35

AIPS, 88
AIPS, Going, 6
angle, 18, 26, 75
angular measure, 18
ANSI, 7
ANSI, ASCII, 6
ANSI, FORTRAN-77, 6
ANSI, IEEE, 6, 30, 47
ANSI, tapes, 65
ANSI, X3.4–1977, 6
ANSI, X3.9–1978, 6
array, 7, 24
array descriptor, 48, 58, 60
array size, 19, 21, 31, 34
array value, 7, 9, 24, 25, 71, 76
array, multidimensional, 2, 12, 13, 60
array, substring, 2, 61
array, variable length, 2, 57, 60
ASCII blank, 7
ASCII character, 3, 7, 29, 35, 38, 81
ASCII table, vii, 1, 2, 5, 35, 76, 87
ASCII text, vii, 3, 7, 11, 12, 16, 24, 38,

47, 71, 81
ASCII, ANSI, 6
AUTHOR, 24

Basic FITS, vii, 1, 7, 71
binary table, vii, 1, 2, 5, 9, 10, 31, 41,

57, 79
BINTABLE, 42, 88
BINTABLE extension, 41, 57, 79, 87

BITPIX, 19, 21, 25, 26, 30–32, 35, 40,
42

BLANK, 25, 30, 75
block size, vii, 1, 2
BLOCKED, 22, 27, 75
blocking, 5, 71, 72
BSCALE, 24, 25, 30, 76
BUNIT, 25, 75, 77
byte order, 29
BZERO, 25, 30, 76

card image, 7, 12, 15
case sensitivity, 15, 16
CDELTn, 25, 75
character string, 16, 47, 61
COMMENT, 24
complex data representation, 18, 47, 73
COMPRESS, 88
conforming extension, 8, 10–13, 21, 71,

72, 74
coordinate axis, 10, 25
coordinate system, 23, 25
coordinate value, 25
CROTAn, 25, 75
CRPIXn, 25, 75
CRVALn, 25, 75
CTYPEn, 25, 75

DATAMAX, 26, 75
DATAMIN, 26, 75
DATE, four-digit year form, 22
DATE, two-digit year form, 22
DATE-OBS, 22, 75
DATExxxx, 23

NOST FITS Definition

94 INDEX

deprecate, 2, 8, 22, 23, 31, 51, 71, 75, 76
DUMP, 88

END, 20, 33, 37, 41, 43, 59
EPOCH, 23, 75
EQUINOX, 23, 24, 75
EXTEND, 21, 22, 27, 35, 40, 41
extension, vii, 1, 2, 8, 10–13, 26, 27, 29,

66, 74, 87
extension name, 3, 8, 10, 12, 13, 26
extension registration, 12, 72
extension type name, 21
extension, conforming, 8, 10–13, 21, 71,

72, 74
extension, standard, 10, 13, 21, 35, 40,

41, 72
EXTLEVEL, 26
EXTNAME, 8, 26
EXTVER, 26

field, empty, 43, 46
FILEMARK, 88
fill, 12, 15, 34, 37, 38, 46, 72
FITS structure, 2, 7–9, 11, 13, 21, 51,

71
FITS Support Office, 12, 21, 72, 74
FITS Working Group, vii, 1
floating point, 17, 47, 83
floating point FITS agreement, vii, 5, 71
floating point, 64 bit, 73
floating point, complex, 18, 48, 74
format, 36
format, data, vii, 29
format, extension, 8
format, fixed, 16, 73
format, free, 16
format, keywords, 16
format, standard, 1
FORTRAN-77, 36
FORTRAN-77, ANSI manual, 6
FORTRAN-77, format, 38

FORTRAN-77, list-directed input, 73
FORTRAN-77, list-directed read, 73, 74
fraction, 8, 71

GCOUNT, 21, 31, 33, 34, 36, 41, 42
Going AIPS, 6
group parameter value, 8, 33, 34
GROUPS, 33

HDU, 8, 19, 20
HDU, extension, 8, 11
HDU, primary, 8–13
heap, 45, 58, 60, 77
HISTORY, 24
hyphen, 15

IAU, vii, 1–3, 5, 9, 71
IAU Style Manual, 5, 18, 74
IAU, 1988 General Assembly, vii
IAUFWG, vii, 9, 12, 21
IEEE, 9
IEEE floating point, 3, 30
IEEE NaN, 9
IEEE special values, 9, 26, 30, 76, 83
IEEE, ANSI, 6
IMAGE, 40
image extension, vii, 1, 2, 5, 40, 41, 79
INSTRUME, 23
integer, 16-bit, 29, 47
integer, 32-bit, 29, 47, 48
integer, 8-bit, 29, 47
integer, complex, 18, 73
interferometry, 31
IUE, 6, 9
IUEIMAGE, 88

keyword, commentary, 15, 24
keyword, indexed, 9, 15, 19, 71
keyword, mandatory, 35, 73
keyword, new, 26
keyword, order, 19, 20, 31, 35

NASA/Science Office of Standards and Technology

INDEX 95

keyword, required, 1, 2, 9, 18, 20, 21, 31,
40, 41, 74, 76

keyword, reserved, 1, 2, 10, 21, 33, 37,
44, 72, 74, 76

keyword, restrictions, 27
keyword, valid characters, 15

list-directed input, 73
list-directed read, 73
logical value, 17

mantissa, 8, 9, 71

NaN, IEEE, 47
NAXIS, 11, 12, 19, 21, 22, 31, 32, 34,

35, 41, 42, 74, 75
NAXIS1, 32, 35, 38, 42, 43, 45, 46, 59,

76
NAXIS2, 35, 38, 42, 45, 46, 59, 76
NAXISn, 11, 12, 19–21, 25, 31, 32, 34,

41, 74
NOST, 9
NRAO, 88
NULL, ASCII, 7, 47

OBJECT, 23
OBSERVER, 23
offset, 58
order, array index, 12
order, byte, 29
order, extensions, 13
order, keyword, 15, 19, 20, 31, 35
order, FITS structures, 11
ORIGIN, 22

parameter, vii, 33, 34
PCOUNT, 21, 31, 33, 34, 36, 41, 42, 59
physical value, 7, 9, 24–26, 33, 34, 37,

44, 71, 75
primary data array, 7, 9, 11, 12, 20, 24,

32, 34, 41, 72
primary header, 2, 7, 10, 11, 18, 21, 27,

31, 66, 75

PSCALn, 33, 34, 76
PTYPEn, 33, 34
PZEROn, 33, 34, 76

random groups, vii, 1, 2, 5, 8, 24, 31, 76
random groups array, vii, 34
REFERENC, 24
reference point, 10, 25, 72
registration, extension, 12
repeat count, 10, 43, 46, 47

scaling, data, 25, 34, 37, 44, 75
sign bit, 29
sign character, 38
significand, 9
SIMPLE, 32
SIMPLE, before random groups, 31
SIMPLE, in primary header, 18, 19
SIMPLE, in special records, 14
slash, 16
special records, 8, 10, 11, 14
special values, IEEE, 47
standard extension, 10, 13, 21, 35, 40,

41, 72
substring arrays, 61

TABLE, 35
TABLE extension, 76, 79, 88
tape, 9-track half-inch, vii
TBCOLn, 36
TDIMn, 46, 58, 61, 63, 77
TDISPn, 45, 77
TELESCOP, 23
TFIELDS, 36, 42, 76
TFORMn, 36, 43, 46–48, 58, 61, 76
THEAP, 45, 59, 77
time system, 23
TNULLn, 37, 38, 44, 47
TSCALn, 37, 38, 44, 59, 77
TTYPEn, 38, 44
TUNITn, 38, 44, 77
twos-complement, 29

NOST FITS Definition

96 INDEX

TZEROn, 37, 38, 44, 59, 77

underscore, 15, 38
units, 9, 10, 18, 25, 38, 41, 44, 74, 75, 77
Universal Time, 22, 75

value, 22
value, undefined, 37, 38, 44
variable length array, 57, 60

XTENSION, 10, 14, 21, 26, 35, 40–42,
74

NASA/Science Office of Standards and Technology

