
Definition of the Flexible Image Transport System
(FITS)

TheFITSStandard

Version 4.0: updated 2016 July 22 by the IAUFWG

Original document publication date: 2016 July 22
Language-edited document publication date: 2018 August 13

FITSWorking Group1

Commission 5: Documentation and Astronomical Data2

International Astronomical Union
http://fits.gsfc.nasa.gov/iaufwg/

1 to be absorbed in Data Representation Working Group under new Commission B2
2 now Commission B2 Data and Documentation

http://fits.gsfc.nasa.gov/iaufwg/

Contents

Contents i

1 Introduction 1
1.1 Brief history ofFITS . 1
1.2 Version history of this document .. 1
1.3 Acknowledgments 2

2 Definitions, acronyms, and symbols 3
2.1 Conventions used in this document 3
2.2 Defined terms 3

3 FITS file organization 4
3.1 Overall file structure .. 4
3.2 IndividualFITSStructures 4
3.3 Primary header and data unit .. 4

3.3.1 Primary header 5
3.3.2 Primary data array 5

3.4 Extensions 5
3.4.1 Requirements for conforming extensions 5
3.4.2 Standard extensions 5
3.4.3 Order of extensions 5

3.5 Special records (restricted use) 5
3.6 Physical blocking .. 6

3.6.1 Bit-stream devices 6
3.6.2 Sequential media 6

3.7 Restrictions on changes .. 6

4 Headers 6
4.1 Keyword records 6

4.1.1 Syntax 6
4.1.2 Components 6

4.2 Value 7
4.2.1 Character string 7
4.2.2 Logical 8
4.2.3 Integer number 8
4.2.4 Real floating-point number .. 8
4.2.5 Complex integer number 9
4.2.6 Complex floating-point number .. 9
4.2.7 Date 10

4.3 Units 10
4.3.1 Construction of units strings .. 10
4.3.2 Units in comment fields 10

4.4 Keywords 10
4.4.1 Mandatory keywords 10
4.4.2 Other reserved keywords 12
4.4.3 Additional keywords 16

5 Data representation 16
5.1 Characters 16
5.2 Integers 16

5.2.1 Eight-bit 16
5.2.2 Sixteen-bit 16
5.2.3 Thirty-two-bit 16
5.2.4 Sixty-four-bit 16
5.2.5 Unsigned integers 16

5.3 IEEE-754 floating point .. 16
5.4 Time 16

i

6 Random-groups structure 16
6.1 Keywords 17

6.1.1 Mandatory keywords 17
6.1.2 Reserved keywords 17

6.2 Data sequence 17
6.3 Data representation .. 18

7 Standard extensions 18
7.1 Image extension 18

7.1.1 Mandatory keywords 18
7.1.2 Other reserved keywords 18
7.1.3 Data sequence 18

7.2 The ASCII-table extension .. 19
7.2.1 Mandatory keywords 19
7.2.2 Other reserved keywords 20
7.2.3 Data sequence 21
7.2.4 Fields 21
7.2.5 Entries 21

7.3 Binary-table extension .. 22
7.3.1 Mandatory keywords 22
7.3.2 Other reserved keywords 22
7.3.3 Data sequence 25
7.3.4 Data display 26
7.3.5 Variable-length arrays .. 27
7.3.6 Variable-length-array guidelines 28

8 World-coordinate systems 29
8.1 Basic concepts 29
8.2 World-coordinate-system representations 30

8.2.1 Alternative WCS axis descriptions 32
8.3 Celestial-coordinate-system representations 33
8.4 Spectral-coordinate-system representations 33

8.4.1 Spectral-coordinate reference frames 35
8.5 Conventional-coordinate types .. 36

9 Representations of time coordinates 36
9.1 Time values 37

9.1.1 ISO-8601datetimestrings . 37
9.1.2 Julian and Besselian epochs .. 37

9.2 Time coordinate frame .. 37
9.2.1 Time scale 37
9.2.2 Time reference value 38
9.2.3 Time reference position 39
9.2.4 Time reference direction .. 40
9.2.5 Solar System ephemeris 41

9.3 Time unit 41
9.4 Time offset, binning, and errors 41

9.4.1 Time offset 41
9.4.2 Time resolution and binning .. 41
9.4.3 Time errors 42

9.5 Global time keywords .. 42
9.6 Other time-coordinate axes .. 43
9.7 Durations 43
9.8 Recommended best practices .. 43

9.8.1 Global keywords and overrides .. 43
9.8.2 Restrictions on alternate descriptions 43
9.8.3 Image time axes 44

ii

10 Representations of compressed data 44
10.1 Tiled image compression .. 44

10.1.1 Required keywords 44
10.1.2 Other reserved keywords .. 44
10.1.3 Table columns 45

10.2 Quantization of floating-point data 46
10.2.1 Dithering algorithms .. 47
10.2.2 Preserving undefined pixels with lossy compression .. 47

10.3 Tiled table compression .. 48
10.3.1 Required keywords 48
10.3.2 Procedure for table compression 48
10.3.3 Compression directive keywords 49
10.3.4 Other reserved keywords .. 49
10.3.5 Supported compression algorithms for tables 49
10.3.6 Compressing variable-length array columns 49

10.4 Compression algorithms .. 50
10.4.1 Rice compression 50
10.4.2 Gzip compression 50
10.4.3 IRAF/PLIO compression 50
10.4.4 H-Compress algorithm 51

A Syntax of keyword records 52

B Suggested time-scale specification 53

C Summary of keywords 54

D ASCII text 56

E IEEE floating-point formats 56
E.1 Basic formats 56

E.1.1 Single 57
E.1.2 Double 57

E.2 Byte patterns 57

F Reserved extension type names 59
F.1 Standard extensions .. 59
F.2 Conforming extensions .. 59
F.3 Other suggested extension names .. 59

G MIME types 59
G.1 MIME type ‘application/fits’ . 59

G.1.1 Recommendations for application writers 60
G.2 MIME type ‘image/fits’ . 60

G.2.1 Recommendations for application writers 60
G.3 File extensions 61

H Past changes or clarifications to the formal definition ofFITS 61
H.1 Differences between the requirements in this Standard and the requirements in the originalFITSpapers. 61
H.2 List of modification to theFITSStandard, Version 3.0 .. 61
H.3 List of modifications to the latestFITSStandard . 62
H.4 List of modifications for language editing 62

I Random-number generator 63

J CHECKSUM implementation guidelines 63
J.1 RecommendedCHECKSUM keyword implementation 63
J.2 Recommended ASCII encoding algorithm 63
J.3 Encoding example 64
J.4 Incremental updating of the checksum 64
J.5 ExampleC code for accumulating the checksum 65
J.6 ExampleC code for ASCII encoding 65

iii

K Header inheritance convention 65

L Green Bank convention 66

References/ Index 66

List of Tables

1 Significant milestones in the development ofFITS. 2
2 Version history of the Standard. .. 2
3 IAU-recommended basic units. .. 8
4 Additional allowed units. .. 9
5 Prefixes for multiples and submultiples. 10
6 Characters and strings allowed to denote mathematical operations. 11
7 Mandatory keywords for primary header. 11
8 Interpretation of validBITPIX value. 11
9 Example of a primary array header. .. 12
10 Mandatory keywords in conforming extensions. 12
11 Usage ofBZERO to represent non-default integer data types. 15
12 Mandatory keywords in primary header preceding random groups. 17
13 Mandatory keywords inIMAGE extensions. 18
14 Mandatory keywords in ASCII-table extensions. 19
15 ValidTFORMn format values inTABLE extensions. 19
16 ValidTDISPn format values inTABLE extensions. 20
17 Mandatory keywords in binary-table extensions. 23
18 ValidTFORMn data types inBINTABLE extensions. 23
19 Usage ofTZEROn to represent non-default integer data types. 24
20 ValidTDISPn format values inBINTABLE extensions. 25
21 WCS and celestial coordinates notation. 30
22 Reserved WCS keywords (continues on next page) 31
23 Reserved celestial-coordinate-algorithm codes. 34
25 Reserved spectral-coordinate type codes. 35
24 Allowed values ofRADESYSa. 35
26 Non-linear spectral algorithm codes. 36
27 Spectral reference systems. .. 36
28 Example keyword records for a 100-element array of complex values. 36
29 Conventional Stokes values. .. 36
30 Recognized Time Scale Values .. 38
31 Standard Time Reference Position Values 39
32 Compatibility of Time Scales and Reference Positions 40
33 Valid Solar System ephemerides .. 41
34 Recommended time units 41
35 Keywords for global time values .. 42
36 Valid mnemonic values for theZCMPTYPE andZCTYPn keywords . 50
37 Keyword parameters for Rice compression 50
38 PLIO Instructions 51
39 Keyword parameters for H-compression 51
C.1 MandatoryFITSkeywords. 54
C.2 ReservedFITSkeywords. 54
C.3 General reservedFITSkeywords. .. . 55
D.1 ASCII character set .. 56
E.1 Summary of format parameters. .. 57
E.2 IEEE floating-point formats. .. 58

iv

1. Introduction

An archival format must be utterly portable and self-
describing, on the assumption that, apart from the tran-
scription device, neither the software nor the hardware
that wrote the data will be available when the data
are read. ‘Preserving Scientific Data on our Physical
Universe,’ p. 60. Steering Committee for the Study
on the Long-Term Retention of Selected Scientific and
Technical Records of the Federal Government, [US]
National Research Council, National Academy Press
1995.

This document, hereafter referred to as the ‘Standard’, de-
scribes the Flexible Image Transport System (FITS), which is
the standard archival data format for astronomical data sets.
Although FITS was originally designed for transporting image
data on magnetic tape (which accounts for the ‘I’ and ‘T’ in the
name), the capabilities of theFITS format have expanded to ac-
commodate more-complex data structures. The role ofFITShas
also grown from simply a way to transport data between differ-
ent analysis software systems into the preferred format fordata
in astronomical archives, as well as the on-line analysis format
used by many software packages.

This standard is intended as a formal codification of the
FITS format, which has been endorsed by the International
Astronomical Union (IAU) for the interchange of astronomical
data (IAU 1983). It is fully consistent with all actions and en-
dorsements of the IAUFITSWorking Group (IAUFWG), which
was appointed by Commission 5 of the IAU to oversee further
development of theFITS format. In particular, this standard de-
fines the organization and content of the header and data units for
all standardFITSdata structures: the primary array, the random-
groups structure, the image extension, the ASCII-table exten-
sion, and the binary-table extension. It also specifies minimum
structural requirements and general principles governingthe cre-
ation of new extensions. For headers, it specifies the propersyn-
tax for keyword records and defines required and reserved key-
words. For data, it specifies character- and numeric-value repre-
sentations and the ordering of contents within the byte stream.

One important feature of theFITS format is that its struc-
ture, down to the bit level, is completely specified in documents
(such as this standard), many of which have been published in
refereed scientific journals. Given these documents, whichare
readily available in hard copy form in libraries around the world
as well as in electronic form on the Internet, future researchers
should be able to decode the stream of bytes in anyFITSformat
data file. In contrast, many other current data formats are only
implicitly defined by the software that reads and writes the files.
If that software is not continually maintained so that it canbe
run on future computer systems, then the information encoded
in those data files could be lost.

1.1. Brief history of FITS

TheFITS format evolved out of the recognition that a standard
format was needed for transferring astronomical images from
one research institution to another. The first prototype devel-
opments of a universal interchange format that would eventu-
ally lead to the definition of theFITS format began in 1976 be-
tween Don Wells at KPNO and Ron Harten at the Netherlands
Foundation for Research in Astronomy (NFRA). This need for

an image interchange format was raised at a meeting of the
Astronomy section of the U.S. National Science Foundation in
January 1979, which led to the formation of a task force to work
on the problem. Most of the technical details of the first basic
FITSagreement (with files consisting of only a primary header
followed by a data array) were subsequently developed by Don
Wells and Eric Greisen (NRAO) in March 1979. After further
refinements, and successful image interchange tests between ob-
servatories that used widely different types of computer systems,
the first papers that defined theFITS format were published in
1981 (Wells et al. 1981; Greisen & Harten 1981). TheFITSfor-
mat quickly became the de facto standard for data interchange
within the astronomical community (mostly on nine-track mag-
netic tape at that time), and was officially endorsed by the IAU
in 1982 (IAU 1983). Most national and international astronom-
ical projects and organizations subsequently adopted theFITS
format for distribution and archiving of their scientific data prod-
ucts. Some of the highlights in the developmental history ofFITS
are shown in Table 1.

1.2. Version history of this document

The fundamental definition of theFITS format was originally
contained in a series of published papers (Wells et al. 1981;
Greisen & Harten 1981; Grosbøl et al. 1988; Harten et al.
1988). AsFITS became more widely used, the need for a sin-
gle document to unambiguously define the requirements of the
FITS format became apparent. In 1990, the NASA Science
Office of Standards and Technology (NOST) at the Goddard
Space Flight Center provided funding for a technical panel to
develop the first version of this Standard document. As shown
in Table 2, the NOST panel produced several draft versions,
culminating in the first NOST standard document, NOST 100-
1.0, in 1993. Although this document was developed under a
NASA accreditation process, it was subsequently formally ap-
proved by the IAUFWG, which is the international control au-
thority for theFITS format. The small update to the Standard in
1995 (NOST 100-1.1) added a recommendation on the physical
units of header keyword values.

The NOST technical panel was convened a second time to
make further updates and clarifications to the Standard, result-
ing in the NOST 100-2.0 version, which was approved by the
IAUFWG in 1999 and published in 2001 (Hanisch et al. 2001).
In 2005, the IAUFWG formally approved the variable-length
array convention in binary tables, and a short time later ap-
proved support for the 64-bit integers data type. New versions
of the Standard were released to reflect both of these changes
(Versions IAUFWG 2.1 and IAUFWG 2.1b).

In early 2007 the IAUFWG appointed its own technical panel
to consider further modifications and updates to the Standard.
The changes proposed by this panel, which were ultimately ap-
proved in 2008 by the IAUFWG after a formal public review
process, are shown in the Version 3.0 of the document, published
in Pence et al. (2010).

Since 2006 a Registry forFITSconventions submitted by the
community was established under the care of the IAUFWG at
http://fits.gsfc.nasa.gov/fits_registry.html. The
Registry was intended as a repository of documentation of us-
ages, which, although not endorsed as part of theFITSStandard,
are otherwise perfectly legal usages ofFITS. In 2014 a small
team was formed to evaluate the possible incorporation of some

1

http://fits.gsfc.nasa.gov/fits_registry.html

Table 1: Significant milestones in the development ofFITS.

Date Milestone Section

1979 InitialFITSAgreement and first interchange of files
1981 Published original (single HDU) definition (Wells et al. 1981)
1981 Published random-groups definition (Greisen & Harten 1981) Sect. 6
1982 Formally endorsed by the IAU (IAU 1983)
1988 Defined rules for multiple extensions (Grosbøl et al. 1988)
1988 IAUFITSWorking Group (IAUFWG) established
1988 Extended to include ASCII-table extensions (Harten etal. 1988) Sect. 7.2
1988 Formal IAU approval of ASCII tables (IAU 1988) Sect. 7.2
1990 Extended to include IEEE floating-point data (Wells & Grosbøl 1990) Sect. 5.3
1994 Extended to multipleIMAGE-array extensions (Ponz et al. 1994) Sect. 7.1
1995 Extended to binary-table extensions (Cotton et al. 1995) Sect. 7.3
1997 Adopted four-digit-year date format (Bunclark & Rots 1997) Sect. 4.4.2
2002 Adopted proposals for world-coordinate systems (Greisen & Calabretta 2002) Sect. 8
2002 Adopted proposals for celestial coordinates (Calabretta & Greisen 2002) Sect. 8.3
2004 Adopted MIME types forFITSdata files (Allen & Wells 2005) App. G
2005 Extended to support variable-length arrays in binary tables Sect. 7.3.5
2005 Adopted proposals for spectral-coordinate systems (Greisen et al. 2006) Sect. 8.4
2005 Extended to include 64-bit integer data type Sect. 5.2.4
2006 Adopted WCS HEALPix projection (Calabretta & Roukema 2007) Sect. 8.3
2006 EstablishedFITSconvention registry
2014 Adopted proposals for time coordinates (Rots et al. 2015) Sect. 9
2016 Adopted proposals for compressed data Sect. 10
2016 Adopted various registered conventions App. H.3
2018 General language editing App. H.4

Table 2: Version history of the Standard.

Version Date Status

NOST 100-0.1 1990 December First Draft Standard
NOST 100-0.2 1991 June Second Revised Draft Standard
NOST 100-0.3 1991 December Third Revised Draft Standard
NOST 100-1.0 1993 June NOST Standard
NOST 100-1.1 1995 September NOST Standard
NOST 100-2.0 1999 March NOST Standard
IAUFWG 2.1 2005 April IAUFWG Standard
IAUFWG 2.1b 2005 December IAUFWG Standard
IAUFWG 3.0 2008 July IAUFWG Standard
IAUFWG 4.0 2016 July IAUFWG Standard (approved)
IAUFWG 4.0 2018 August IAUFWG Standard (language-edited)

conventions within the Standard, while another small team was
in charge to update the Standard document with a summary of
the WCS time representation (Rots et al. 2015), which in the
meanwhile had been voted natively as part of theFITSStandard.

Details on the conventions that have been incorporated into
this latest version of the Standard (CONTINUE long-string key-
words, blank header space,CHECKSUM, column limits, tiled im-
age and table compression) or only briefly mentioned (key-
word inheritance and Green Bank conventions) are describedin
Appendix H.3, which also lists the corresponding affected sec-
tions of the Standard.

After the approval by the IAUFWG in July 2016 the
Standard was subjected to a thorough language editing (withno
impact on the technical prescriptions) before the final issue in
2018. Details about the language editing changes are provided
in Appendix H.4.

The latest version of the Standard, as well as other infor-
mation about theFITS format, can be obtained from theFITS
Support Office website athttp://fits.gsfc.nasa.gov. This
website also contains the contact information for the Chairman

of the IAUFWG, to whom any questions or comments regarding
this Standard should be addressed.

1.3. Acknowledgments

The members of the three technical panels that produced this
Standard are shown below.

First technical panel, 1990–1993
Robert J. Hanisch (Chair) Space Telescope Science Inst.
Lee E. Brotzman Hughes STX
Edward Kemper Hughes STX
Barry M. Schlesinger Raytheon STX
Peter J. Teuben University of Maryland
Michael E. Van SteenbergNASA Goddard SFC
Wayne H. Warren Jr. Hughes STX
Richard A. White NASA Goddard SFC

Second technical panel, 1994–1999
Robert J. Hanisch (Chair) Space Telescope Science Inst.
Allen Farris Space Telescope Science Inst.

2

http://fits.gsfc.nasa.gov

Eric W. Greisen National Radio Astr. Obs.
William D. Pence NASA Goddard SFC
Barry M. Schlesinger Raytheon STX
Peter J. Teuben University of Maryland
Randall W. Thompson Computer Sciences Corp.
Archibald Warnock A/WWW Enterprises

Third technical panel, 2007
William D. Pence (Chair) NASA Goddard SFC
Lucio Chiappetti IASF Milano, INAF, Italy
Clive G. Page University of Leicester, UK
Richard Shaw National Optical Astr. Obs.
Elizabeth Stobie University of Arizona

Dedicated task forces, 2013-2016
Lucio Chiappetti IASF Milano, INAF, Italy
Steve Allen UCO Lick Observatory
Adam Dobrzycki European Southern Observatory
William D. Pence NASA Goddard SFC
Arnold Rots Harvard Smithsonian CfA
Richard Shaw National Optical Astr. Obs.
William T. Thompson NASA Goddard SFC

Language editing, 2016-2018
Malcolm J. Currie Rutherford Appleton Lab, UK
Lucio Chiappetti IASF Milano, INAF, Italy

2. Definitions, acronyms, and symbols

2.1. Conventions used in this document

Terms or letters set inCourier typeface represent literal
strings that appear inFITSfiles. In the case of keyword names,
such as ‘NAXISn’, the lower-case letter represents a positive in-
teger index number, generally in the range 1 to 999. The empha-
sized wordsmust, shall, should, may, recommended, required,
andoptional in this document are to be interpreted as described
in IETF standard, RFC 2119 (Bradner 1997).

2.2. Defined terms

 Used to designate an ASCII space character.
ANSI American National Standards Institute.
Array A sequence of data values. This sequence corresponds to

the elements in a rectilinear,n-dimensional matrix (1≤ n ≤
999, orn = 0 in the case of a null array).

Array value The value of an element of an array in aFITSfile,
without the application of the associated linear transforma-
tion to derive the physical value.

ASCII American National Standard Code for Information
Interchange.

ASCII character Any member of the seven-bit ASCII charac-
ter set.

ASCII digit One of the ten ASCII characters ‘0’ through ‘9’,
which are represented by decimal character codes 48 through
57 (hexadecimal 30 through 39).

ASCII NULL The ASCII character that has all eight bits set to
zero.

ASCII space The ASCII character for space, which is repre-
sented by decimal 32 (hexadecimal 20).

ASCII text The restricted set of ASCII characters decimal 32
through 126 (hexadecimal 20 through 7E).

BasicFITS The FITS structure consisting of the primary
header followed by a single primary data array. This is also
known as Single ImageFITS (SIF), as opposed to Multi-
ExtensionFITS (MEF) files that contain one or more exten-
sions following the primary HDU.

Big endian The numerical data format used inFITS files in
which the most-significant byte of the value is stored first
followed by the remaining bytes in order of significance.

Bit A single binary digit.
Byte An ordered sequence of eight consecutive bits treated as a

single entity.
Card image An obsolete term for an 80-character keyword

record derived from the 80-column punched computer cards
that were prevalent in the 1960s and 1970s.

Character string A sequence of one or more of the restricted
set of ASCII-text characters, decimal 32 through 126 (hex-
adecimal 20 through 7E).

Conforming extension An extension whose keywords and or-
ganization adhere to the requirements for conforming exten-
sions defined in Sect. 3.4.1 of this Standard.

Data block A 2880-byteFITSblock containing data described
by the keywords in the associated header of that HDU.

Deprecate To express disapproval of. This term is used to refer
to obsolete structures thatshould notbe used in newFITS
files, but whichshall remain valid indefinitely.

Entry A single value in an ASCII-table or binary-table standard
extension.

Extension A FITSHDU appearing after the primary HDU in a
FITSfile.

Extension type nameThe value of theXTENSION keyword,
used to identify the type of the extension.

Field A component of a larger entity, such as a keyword record
or a row of an ASCII-table or binary-table standard exten-
sion. A field in a table-extension row consists of a set of
zero-or-more table entries collectively described by a single
format.

File A sequence of one or more records terminated by an end-
of-file indicator appropriate to the medium.

FITS Flexible Image Transport System.
FITS block A sequence of 2880 eight-bit bytes aligned on

2880-byte boundaries in theFITSfile, most commonly either
a header block or a data block. Special records are another
infrequently used type ofFITSblock. This block length was
chosen because it is evenly divisible by the byte and word
lengths of all known computer systems at the timeFITSwas
developed in 1979.

FITS file A file with a format that conforms to the specifications
in this document.

FITS structure One of the components of aFITSfile: the pri-
mary HDU, the random-groups records, an extension, or,
collectively, the special records following the last extension.

FITS Support Office The FITS information website that is
maintained by the IAUFWG and is currently hosted at
http://fits.gsfc.nasa.gov.

Floating point A computer representation of a real number.
Fraction The field of the mantissa (or significand) of a floating-

point number that lies to the right of its implied binary point.
Group parameter value The value of one of the parameters

preceding a group in the random-groups structure, without
the application of the associated linear transformation.

3

http://fits.gsfc.nasa.gov

HDU Header and Data Unit. A data structure consisting of a
header and the data the header describes. Note that an HDU
mayconsist entirely of a header with no data blocks.

Header A series of keyword records organized within one or
more header blocks that describes structures and/or data that
follow it in the FITSfile.

Header block A 2880-byteFITS block containing a sequence
of thirty-six 80-character keyword records.

Heap The supplemental data area following the main data table
in a binary-table standard extension.

IAU International Astronomical Union.
IAUFWG International Astronomical UnionFITS Working

Group.
IEEE Institute of Electrical and Electronic Engineers.
IEEE NaN IEEE Not-a-Number value; used to represent unde-

fined floating-point values inFITSarrays and binary tables.
IEEE special values Floating-point number byte patterns

that have a special, reserved meaning, such as−0, ±∞,
±underflow, ±overflow, ±denormalized, ±NaN. (See
Appendix E).

Indexed keyword A keyword name that is of the form of a
fixed root with an appended positive integer index number.

Keyword name The first eight bytes of a keyword record,
which contain the ASCII name of a metadata quantity (un-
less it is blank).

Keyword record An 80-character record in a header block con-
sisting of a keyword name in the first eight characters fol-
lowed by anoptional value indicator, value, and comment
string. The keyword recordshall be composed only of the
restricted set of ASCII-text characters ranging from decimal
32 to 126 (hexadecimal 20 to 7E).

Mandatory keyword A keyword thatmustbe used in allFITS
files or a keywordrequired in conjunction with particular
FITSstructures.

Mantissa Also known as significand. The component of an
IEEE floating-point number consisting of an explicit or im-
plicit leading bit to the left of its implied binary point anda
fraction field to the right.

MEF Multi-ExtensionFITS, i.e., aFITS file containing a pri-
mary HDU followed by one or more extension HDUs.

NOST NASA/Science Office of Standards and Technology.
Physical value The value in physical units represented by an

element of an array and possibly derived from the array value
using the associated, butoptional, linear transformation.

Pixel Short for ‘Picture element’; a single location within an
array.

Primary data array The data array contained in the primary
HDU.

Primary HDU The first HDU in aFITSfile.
Primary header The first header in aFITS file, containing in-

formation on the overall contents of the file (as well as on the
primary data array, if present).

Random Group A FITSstructure consisting of a collection of
‘groups’, where a group consists of a subarray of data and a
set of associated parameter values. Random groups are dep-
recated for any use other than for radio interferometry data.

Record A sequence of bits treated as a single logical entity.
Repeat count The number of values represented in a field in a

binary-table standard extension.
Reserved keyword An optional keyword thatmust be used

only in the manner defined in this Standard.

SIF Single ImageFITS, i.e., aFITS file containing only a pri-
mary HDU, without any extension HDUs. Also known as
BasicFITS.

Special records A series of one or moreFITSblocks following
the last HDU whose internal structure does not otherwise
conform to that for the primary HDU or to that specified for
a conforming extension in this Standard. Any use of spe-
cial records requires approval from the IAUFITS Working
Group.

Standard extension A conforming extension whose header and
data content are completely specified in Sect. 7 of this
Standard, namely, an image extension, an ASCII-table ex-
tension, or a binary-table extension.

3. FITS file organization

3.1. Overall file structure

A FITSfile shall be composed of the followingFITSstructures,
in the order listed:

– Primary header and data unit (HDU).
– Conforming Extensions (optional).
– Other special records (optional, restricted).

A FITS file composed of only the primary HDU is sometimes
referred to as a BasicFITS file, or a Single ImageFITS (SIF)
file, and aFITSfile containing one or more extensions following
the primary HDU is sometimes referred to as a Multi-Extension
FITS(MEF) file.

EachFITS structureshall consist of an integral number of
FITSblocks, which are each 2880 bytes (23040 bits) in length.
The primary HDUshall start with the firstFITS block of the
FITS file. The firstFITS block of each subsequentFITS struc-
tureshallbe theFITSblock immediately following the lastFITS
block of the precedingFITSstructure.

This Standard neither imposes a limit on the total size of a
FITSfile, nor imposes a limit on the size of an individual HDU
within a FITSfile. Software packages that read or write data ac-
cording to this Standard could be limited, however, in the size
of files that are supported. In particular, some software systems
have historically only supported files up to 231 bytes in size (ap-
proximately 2.1× 109 bytes).

3.2. Individual FITS Structures

The primary HDU and every extension HDUshall consist of
one or more 2880-byte header blocks immediately followed by
an optionalsequence of associated 2880-byte data blocks. The
header blocksshall contain only the restricted set of ASCII-text
characters, decimal 32 through 126 (hexadecimal 20 through
7E). The ASCII control characters with decimal values less than
32 (including the null, tab, carriage return, and line-feedcharac-
ters), and the delete character (decimal 127 or hexadecimal7F)
must notappear anywhere within a header block.

3.3. Primary header and data unit

The first component of aFITS file shall be the primary HDU,
which always contains the primary header andmaybe followed
by the primary data array. If the primary data array has zero
length, as determined by the values of theNAXIS andNAXISn

4

A(1, 1, . . . , 1),
A(2, 1, . . . , 1),

...,
A(NAXIS1, 1, . . . , 1),
A(1, 2, . . . , 1),
A(2, 2, . . . , 1),

.

..,
A(NAXIS1, 2, . . . , 1),

..

.,
A(1, NAXIS2, . . . ,NAXISm),

...,
A(NAXIS1, NAXIS2, . . . ,NAXISm)

Fig. 1: Arrays of more than one dimensionshall consist of a se-
quence such that the index along Axis 1 varies most rapidly and
those along subsequent axes progressively less rapidly.

keywords in the primary header (Sect. 4.4.1), then the primary
HDU shallcontain no data blocks.

3.3.1. Primary header

The header of a primary HDUshall consist of one or more
header blocks, each containing a series of 80-character keyword
records containing only the restricted set of ASCII-text charac-
ters. Each 2880-byte header block contains 36 keyword records.
The last header blockmustcontain theEND keyword (defined in
Sect. 4.4.1), which marks the logical end of the header. Keyword
records without information (e.g., following theEND keyword)
shall be filled with ASCII spaces (decimal 32 or hexadecimal
20).

3.3.2. Primary data array

The primary data array, if present,shall consist of a single data
array with from 1 to 999 dimensions (as specified by theNAXIS

keyword defined in Sect. 4.4.1). The random-groups convention
in the primary data array is a more-complicated structure and
is discussed separately in Sect. 6. The entire array of data val-
ues are represented by a continuous stream of bits starting with
the first bit of the first data block. Each data valueshall con-
sist of a fixed number of bits that is determined by the value of
theBITPIX keyword (Sect. 4.4.1). Arrays of more than one di-
mensionshall consist of a sequence such that the index along
Axis 1 varies most rapidly, that along Axis 2 next most rapidly,
and those along subsequent axes progressively less rapidly, with
that along Axism, wherem is the value ofNAXIS, varying least
rapidly. There is no space or any other special character between
the last value on a row or plane and the first value on the next
row or plane of a multi-dimensional array. Except for the loca-
tion of the first element, the array structure is independentof the
FITSblock structure. This storage order is shown schematically
in Fig. 1 and is the same order as in multi-dimensional arraysin
the Fortran programming language (ISO 2004). The index count
along each axisshall begin with 1 and increment by 1 up to the
value of theNAXISn keyword (Sect. 4.4.1).

If the data array does not fill the final data block, the remain-
der of the data blockshall be filled by setting all bits to zero.

The individual data valuesshallbe stored in big-endian byte or-
der such that the byte containing the most-significant bits of the
value appears first in theFITS file, followed by the remaining
bytes, if any, in decreasing order of significance.

3.4. Extensions

3.4.1. Requirements for conforming extensions

All extensions, whether or not further described in this Standard,
shall fulfill the following requirements to be in conformance
with this FITS Standard. New extension typesshouldbe cre-
ated only when the organization of the information is such that
it cannot be handled by one of the existing extension types. A
FITS file that contains extensions is commonly referred to as a
multi-extensionFITS(MEF) file.

3.4.1.1. Identity

Each extension typeshall have a unique type name, speci-
fied in the header by theXTENSION keyword (Sect. 4.4.1). To
preclude conflict, extension type namesmustbe registered with
the IAUFWG. The current list of registered extensions is given
in Appendix F. An up-to-date list is also maintained on theFITS
Support Office website.

3.4.1.2. Size specification

The total number of bits in the data of each extension
shallbe specified in the header for that extension, in the manner
prescribed in Sect. 4.4.1.

3.4.2. Standard extensions

A standard extension is a conforming extension whose organi-
zation and content are completely specified in Sect. 7 of this
Standard. Only one extension formatshallbe approved for each
type of data organization.

3.4.3. Order of extensions

An extensionmayfollow the primary HDU or another conform-
ing extension. Standard extensions and other conforming exten-
sionsmayappear in any order in aFITSfile.

3.5. Special records (restricted use)

Special records are 2880-byteFITS blocks following the last
HDU of the FITS file that have an unspecified structure that
does not meet the requirements of a conforming extension. The
first eight bytes of the special recordsmust notcontain the string
‘XTENSION’. It is recommendedthat they do not contain the
string ‘SIMPLE ’. The contents of special records are not oth-
erwise specified by this Standard.

Special records were originally designed as a way for the
FITS format to evolve by allowing newFITS structures to be
implemented. Following the development of conforming exten-
sions, which provide a general mechanism for storing different
types of data structures inFITSformat in a well defined manner,
the need for other new types ofFITS data structures has been

5

greatly reduced. Consequently, further use of special records is
restricted and requires the approval of the IAUFITS Working
Group.

3.6. Physical blocking

3.6.1. Bit-stream devices

For bit-stream devices, including but not restricted to logical file
systems,FITSfiles shall be interpreted as a sequence of one or
more 2880-byteFITS blocks, regardless of the physical block-
ing structure of the underlying recording media. When writing
a FITS file on media with a physical block size unequal to the
2880-byteFITS block length, any bytes remaining in the last
physical block following the end of theFITS file shouldbe set
to zero. Similarly, when readingFITS files on such media, any
bytes remaining in the last physical block following the endof
theFITSfile shall be disregarded.

3.6.2. Sequential media

The FITS format was originally developed for writing files on
sequential magnetic-tape devices. The following rules on how
to write to sequential media (Grosbøl & Wells 1994) are now
irrelevant to most current data-storage devices.

If physically possible,FITSfilesshall be written on sequen-
tial media in blocks that are from one to ten integer multiples of
2880 bytes in length. If this is not possible, theFITSfile shallbe
written as a bit stream using the native block size of the sequen-
tial device. Any bytes remaining in the last block followingthe
end of theFITSfile shallbe set to zero.

When readingFITS files on sequential media, any files
shorter than 2880 bytes in length (e.g., ANSI tape labels) are
not considered part of theFITSfiles andshouldbe disregarded.

3.7. Restrictions on changes

Any structure that is a validFITSstructureshall remain a valid
FITSstructure at all future times. Use of certain validFITSstruc-
turesmaybe deprecated by this or futureFITS Standard docu-
ments.

4. Headers

The first two sections of this chapter define the structure and
content of header keyword records. Sect. 4.3 offers recommen-
dations on how physical units should be expressed. The final
section defines the mandatory and reserved keywords for pri-
mary arrays and conforming extensions.

4.1. Keyword records

4.1.1. Syntax

Each 80-character header keyword recordshallconsist of a key-
word name, a value indicator (onlyrequiredif a value is present),
anoptionalvalue, and anoptionalcomment. Keywordsmayap-
pear in any order except where specifically stated otherwisein
this Standard. It isrecommendedthat the order of the keywords
in FITS files be preserved during data processing operations
because the designers of theFITS file may have used conven-
tions that attach particular significance to the order of certain

keywords (e.g., by grouping sequences ofCOMMENT keywords
at specific locations in the header, or appendingHISTORY key-
words in chronological order of the data processing steps orus-
ing CONTINUE keywords to generate long-string keyword val-
ues).

A formal syntax, giving a complete definition of the syntax
of FITSkeyword records, is given in Appendix A. It is intended
as an aid in interpreting the text defining the Standard.

In earlier versions of this Standard aFITSkeyword, assumed
as an item whose value is to be looked up by name (and pre-
sumably assigned to a variable) by aFITS-reading program,
was associated one to one to a single header keyword record.
With the introduction of continued (long-string) keywords(see
Sect. 4.2.1.2), suchFITS keywordsmay span more than one
header keyword record, and the valueshall be created by con-
catenation as explained in Sect. 4.2.1.2.

4.1.2. Components

4.1.2.1. Keyword name (Bytes 1 through 8)

The keyword nameshall be a left justified, eight-character,
space-filled, ASCII string with no embedded spaces. All digits
0 through 9 (decimal ASCII codes 48 to 57, or hexadecimal 30
to 39) and upper case Latin alphabetic characters’A’ through
’Z’ (decimal 65 to 90 or hexadecimal 41 to 5A) are permitted;
lower-case charactersshall not be used. The underscore (’ ’,
decimal 95 or hexadecimal 5F) and hyphen (’-’, decimal 45
or hexadecimal 2D) are also permitted. No other characters
are permitted.3 For indexed keyword names that have a single
positive integer index counter appended to the root name,
the countershall not have leading zeros (e.g.,NAXIS1, not
NAXIS001). Note that keyword names that begin with (or
consist solely of) any combination of hyphens, underscores, and
digits are legal.

4.1.2.2. Value indicator (Bytes 9 and 10)

If the two ASCII characters'= ' (decimal 61 followed
by decimal 32) are present in Bytes 9 and 10 of the keyword
record, this indicates that the keyword has a value field asso-
ciated with it, unless it is one of the commentary keywords
defined in Sect. 4.4.2 (i.e., aHISTORY, COMMENT, or completely
blank keyword name), which, by definition, have no value.

4.1.2.3. Value/comment (Bytes 11 through 80)

In keyword records that contain the value indicator in Bytes9
and 10, the remaining Bytes 11 through 80 of the recordshall
contain the value, if any, of the keyword, followed byoptional
comments. In keyword records without a value indicator,
Bytes 9 through 80shouldbe interpreted as commentary text,
however, this does not preclude conventions that interpretthe
content of these bytes in other ways.

The value field, when present,shall contain the ASCII-text
representation of a literal string constant, a logical constant, or
a numerical constant, in the format specified in Sect. 4.2. The
value fieldmay be a null field; i.e., itmay consist entirely of

3 This requirement differs from the wording in the originalFITSpa-
pers. See Appendix H.

6

spaces, in which case the value associated with the keyword is
undefined.

The mandatoryFITS keywords defined in this Standard
must notappear more than once within a header. All other key-
words that have a valueshould notappear more than once. If a
keyword does appear multiple times with different values, then
the value is indeterminate.

If a comment follows the value field, itmustbe preceded
by a slash (’/’, decimal 47 or hexadecimal 2F).3 A space be-
tween the value and the slash is stronglyrecommended. The
commentmay contain any of the restricted set of ASCII-text
characters, decimal 32 through 126 (hexadecimal 20 through
7E). The ASCII control characters with decimal values less than
32 (including the null, tab, carriage return, and line-feedcharac-
ters), and the delete character (decimal 127 or hexadecimal7F)
must notappear anywhere within a keyword record.

4.2. Value

The structure of the value field depends on the data type of the
value. The value field represents a single value and not an array
of values.3 The value fieldmustbe in one of two formats: fixed
or free. The fixed-format isrequired for values of mandatory
keywords and isrecommendedfor values of all other keywords.

4.2.1. Character string

4.2.1.1 Single-record string keywords

A character-string valueshall be composed only of the set of
restricted ASCII-text characters, decimal 32 through 126 (hex-
adecimal 20 through 7E) enclosed by single-quote characters
(“’”, decimal 39, hexadecimal 27). A single quote is represented
within a string as two successive single quotes, e.g., O’HARA =
'O''HARA'. Leading spaces are significant; trailing spaces are
not. This Standard imposes no requirements on the case sensi-
tivity of character string values unless explicitly statedin the
definition of specific keywords.

If the value is a fixed-format character string, the starting
single-quote charactermustbe in Byte 11 of the keyword record
and the closing single quotemustoccur in or before Byte 80.
Earlier versions of this Standard alsorequiredthat fixed-format
characters stringsmustbe padded with space characters to at
least a length of eight characters so that the closing quote char-
acter does not occur before Byte 20. This minimum character-
string length is no longerrequired, except for the value of the
XTENSION keyword (e.g.,'IMAGE ' and 'TABLE '; see
Sect. 7), whichmustbe padded to a length of eight characters
for backward compatibility with previous usage.

Free-format character strings follow the same rules as fixed-
format character strings except that the starting single-quote
charactermayoccur after Byte 11. Any bytes preceding the start-
ing quote character and after Byte 10mustcontain the space
character.

Note that there is a subtle distinction between the following
three keywords.

KEYWORD1= '' / null string keyword

KEYWORD2= ' ' / empty string keyword

KEYWORD3= / undefined keyword

The value ofKEYWORD1 is a null, or zero-length string whereas
the value of theKEYWORD2 is an empty string (nominally a single
space character because the first space in the string is significant,
but trailing spaces are not). The value ofKEYWORD3 is undefined
and has an indeterminate data type as well, except in cases where
the data type of the specified keyword is explicitly defined inthis
Standard.

The maximum length of a string value that can be repre-
sented on a single keyword record is 68 characters, with the
opening and closing quote characters in Bytes 11 and 80, re-
spectively. In general, no length limit fewer than 68 is implied
for character-valued keywords.

Whenever a keyword value is declared ‘string’ or said to
‘contain a character string’, the length limits in this section ap-
ply. The next section applies when the value is declared ‘long-
string’.

4.2.1.2 Continued string (long-string) keywords

Earlier versions of this Standard only defined single-record
string keywords as described in the previous section. The
Standard now incorporates a convention (originally developed
for use inFITSfiles from high-energy astrophysics missions) for
continuing arbitrarily long string values over a potentially unlim-
ited sequence of multiple consecutive keyword records using the
following procedure.

1. Divide the long-string value into a sequence of smaller sub-
strings, each of which contains fewer than 68 characters.
(Note that if the string contains any literal single-quote char-
acters, then thesemustbe represented as a pair of single-
quote characters in theFITS-keyword value, and these two
charactersmustboth be contained within a single substring).

2. Append an ampersand character (’&’) to the end of each
substring, except for the last substring. This character serves
as a flag toFITS-reading software that this string valuemay
be continued on the following keyword in the header.

3. Enclose each substring with single-quote characters. Non-
significant space charactersmayoccur between the amper-
sand character and the closing quote character.

4. Write the first substring as the value of the specified key-
word.

5. Write each subsequent substring, in order, to a series of key-
words that all have the reserved keyword nameCONTINUE

(see Sect. 4.4.2) in Bytes 1 through 8, and have space char-
acters in Bytes 9 and 10 of the keyword record. The substring
maybe located anywhere in Bytes 11 through 80 of the key-
word record andmaybe preceded by non-significant space
characters starting in Byte 11. A comment stringmayfollow
the substring; if present, the comment stringmustbe sepa-
rated from the substring by a forward-slash character (’/’).
Also, it is strongly recommendedthat the slash character be
preceded by a space character.

TheCONTINUE keywordmust notbe used with of any of the
mandatory or reserved keywords defined in this Standard unless
explicitly declared of type long-string.

The following keyword records illustrate a string value that
is continued over multiple keyword records. (Note: the length of
the substrings have been reduced to fit within the page layout.)

WEATHER = 'Partly cloudy during the evening f&'

7

CONTINUE 'ollowed by cloudy skies overnight.&'

CONTINUE ' Low 21C. Winds NNE at 5 to 10 mph.'

If needed, additional space for the keyword comment field
can be generated by continuing the string value with one or more
null strings, as illustrated schematically below.

STRKEY = 'This keyword value is continued &'

CONTINUE ' over multiple keyword records.&'

CONTINUE '&' / The comment field for this

CONTINUE '&' / keyword is also continued

CONTINUE '' / over multiple records.

FITS-reading software can reconstruct the long-string value
by following an inverse procedure of checking if the string value
ends with the’&’ character and is immediately followed by a
conformingCONTINUE keyword record. If both conditions are
true, then concatenate the substring from theCONTINUE record
onto the previous substring after first deleting the trailing ’&’

character. Repeat these steps until all subsequentCONTINUE

records have been processed.
Note that if a string value ends with the’&’ character, but

is not immediately followed by aCONTINUE keyword that con-
forms to all the previously described requirements, then the’&’
charactershouldbe interpreted as the literal last character in the
string. Also, any ‘orphaned’CONTINUE keyword records (for-
mally not invalidating theFITS file, although likely represent-
ing an error with respect to what the author of the file meant)
shouldbe interpreted as containing commentary text in Bytes 9–
80 (similar to aCOMMENT keyword).

4.2.2. Logical

If the value is a fixed-format logical constant, itshall appear as
an upper-caseT or F in Byte 30. A logical value is represented
in free-format by a single character consisting of an upper-case
T or F as the first non-space character in Bytes 11 through 80.

4.2.3. Integer number

If the value is a fixed-format integer, the ASCII representation
shall be right-justified in Bytes 11 through 30. An integer con-
sists of a’+’ (decimal 43 or hexadecimal 2B) or’-’ (decimal
45 or hexadecimal 2D) sign, followed by one or more contiguous
ASCII digits (decimal 48 to 57 or hexadecimal 30 to 39), with
no embedded spaces. The leading’+’ sign isoptional. Leading
zeros are permitted, but are not significant. The integer represen-
tationshall always be interpreted as a signed, decimal number.
This Standard does not limit the range of an integer keyword
value, however, software packages that read or write data ac-
cording to this Standard could be limited in the range of values
that are supported (e.g., to the range that can be represented by
a 32-bit or 64-bit signed binary integer).

A free-format integer value follows the same rules as fixed-
format integers except that the ASCII representationmayoccur
anywhere within Bytes 11 through 80.

4.2.4. Real floating-point number

If the value is a fixed-format real floating-point number, the
ASCII representationshallbe right-justified in Bytes 11 through
30.

Table 3: IAU-recommended basic units.

Quantity Unit Meaning Notes

SI base& supplementary units
length m meter
mass kg kilogram g gram allowed
time s second
plane angle rad radian
solid angle sr steradian
temperature K kelvin
electric current A ampere
amount of substance mol mole
luminous intensity cd candela

IAU-recognized derived units
frequency Hz hertz s−1

energy J joule N m
power W watt J s−1

electric potential V volt J C−1

force N newton kg m s−2

pressure, stress Pa pascal N m−2

electric charge C coulomb A s
electric resistance Ohm ohm V A−1

electric conductance S siemens A V−1

electric capacitance F farad C V−1

magnetic flux Wb weber V s
magnetic flux density T tesla Wb m−2

inductance H henry Wb A−1

luminous flux lm lumen cd sr
illuminance lx lux lm m−2

A floating-point number is represented by a decimal number
followed by anoptionalexponent, with no embedded spaces. A
decimal numbershall consist of a’+’ (decimal 43 or hexadeci-
mal 2B) or’-’ (decimal 45 or hexadecimal 2D) sign, followed
by a sequence of ASCII digits containing a single decimal point
(’.’), representing an integer part and a fractional part of the
floating-point number. The leading’+’ sign isoptional. At least
one of the integer part or fractional partmustbe present. If the
fractional part is present, the decimal pointmustalso be present.
If only the integer part is present, the decimal pointmaybe omit-
ted, in which case the floating-point number is indistinguishable
from an integer. The exponent, if present, consists of an expo-
nent letter followed by an integer. Letters in the exponential form
(’E’ or ’D’)4 shall be upper case. The full precision of 64-bit
values cannot be expressed over the whole range of values using
the fixed-format. This Standard neither imposes an upper limit
on the number of digits of precision, nor any limit on the range
of floating-point keyword values. Software packages that read or
write data according to this Standard could be limited, however,
in the range of values and exponents that are supported (e.g., to
the range that can be represented by a 32-bit or 64-bit floating-
point number).

A free-format floating-point value follows the same rules as
a fixed-format floating-point value except that the ASCII repre-
sentationmayoccur anywhere within Bytes 11 through 80.

4 The’D’ exponent form is traditionally used when representing val-
ues that have more decimals of precision or a larger magnitude than can
be represented by a single-precision 32-bit floating-pointnumber, but
otherwise there is no distinction between’E’ or ’D’.

8

Table 4: Additional allowed units.

Quantity Unit Meaning Notes

plane angle deg degree of arc π/180 rad
arcmin minute of arc 1/60 deg
arcsec second of arc 1/3600 deg
mas milli-second of arc 1/3 600 000 deg

time min minute 60 s
h hour 60 min= 3600 s
d day 86 400 s

† a year (Julian) 31 557 600 s (365.25 d), peta a(Pa) forbidden
† yr year (Julian) a is IAU-style

energy∗ † eV electron volt 1.6021765× 10−19 J
‡ erg erg 10−7 J

Ry rydberg 1
2

(

2πe2

hc

)2
mec2 = 13.605692 eV

mass∗ solMass solar mass 1.9891× 1030 kg
u unified atomic mass unit 1.6605387× 10−27 kg

luminosity solLum Solar luminosity 3.8268× 1026 W
length ‡ Angstrom angstrom 10−10 m

solRad Solar radius 6.9599× 108 m
AU astronomical unit 1.49598× 1011 m
lyr light year 9.460730× 1015 m

† pc parsec 3.0857× 1016 m
events count count

ct count
photon photon
ph photon

flux density † Jy jansky 10−26 W m−2 Hz−1

† mag (stellar) magnitude
† R rayleigh 1010/(4π) photons m−2 s−1 sr−1

magnetic field †‡ G gauss 10−4 T
area pixel (image/detector) pixel

pix (image/detector) pixel
†‡ barn barn 10−28 m2

Miscellaneous units

D debye 1
3 × 10−29 C.m

Sun relative to Sun e.g., abundances
chan (detector) channel
bin numerous applications (including the one-dimensional analog of pixel)
voxel three-dimensional analog of pixel

† bit binary information unit
† byte (computer) byte eight bits

adu Analog-to-digital converter
beam beam area of observation as in Jy/beam

Notes.(†)Addition of prefixes for decimal multiples and submultiplesare allowed.(‡)Deprecated in IAU Style Manual (McNally 1988) but still in
use.(∗)Conversion factors from CODATA Internationally recommended values of the fundamental physical constants 2002 (http://physics.

nist.gov/cuu/Constants/).

4.2.5. Complex integer number

There is no fixed-format for complex integer numbers.5

If the value is a complex integer number, the valuemustbe
represented as a real part and an imaginary part, separated by
a comma and enclosed in parentheses e.g.,(123, 45). Spaces
mayprecede and follow the real and imaginary parts. The real
and imaginary parts are represented in the same way as integers
(Sect. 4.2.3). Such a representation is regarded as a singlevalue
for the complex integer number. This representationmaybe lo-
cated anywhere within Bytes 11 through 80.

5 This requirement differs from the wording in the originalFITSpa-
pers. See Appendix H.

4.2.6. Complex floating-point number

There is no fixed-format for complex floating-point numbers.5

If the value is a complex floating-point number, the value
must be represented as a real part and an imaginary part,
separated by a comma and enclosed in parentheses, e.g.,
(123.23, -45.7). Spacesmay precede and follow the real
and imaginary parts. The real and imaginary parts are repre-
sented in the same way as floating-point values (Sect. 4.2.4).
Such a representation is regarded as a single value for the com-
plex floating-point number. This representationmaybe located
anywhere within Bytes 11 through 80.

9

http://physics.nist.gov/cuu/Constants/
http://physics.nist.gov/cuu/Constants/

4.2.7. Date

There is strictly no such thing as a data type fordate valued
keywords, however a pseudo data type ofdatetimeis defined in
Sect. 9.1.1 andmustbe used to write ISO-8601datetimestrings
as character strings.

If a keyword needs to express atime in JD or MJD (see
Sect. 9), this can be formatted as an arbitrary precision number,
optionally separating the integer and fractional part as specified
in Sect. 9.2.2.

4.3. Units

When a numerical keyword value represents a physical quantity,
it is recommendedthat units be provided. Unitsshall be rep-
resented with a string of characters composed of the restricted
ASCII-text character set. Unit strings can be used as valuesof
keywords (e.g., for the reserved keywordsBUNIT, andTUNITn),
as an entry in a character-string column of an ASCII-table or
binary-table extension, or as part of a keyword comment string
(see Sect. 4.3.2, below).

The units of allFITSheader keyword values, with the excep-
tion of measurements of angles,shouldconform with the rec-
ommendations in the IAU Style Manual (McNally 1988). For
angular measurements given as floating-point values and spec-
ified with reserved keywords, the unitsshouldbe degrees (i.e.,
deg). If a requirement exists within this Standard for the unitsof
a keyword, then those unitsmustbe used.

The units for fundamental physical quantities recommended
by the IAU are given in Table 3. Table 4 lists additional units
that are commonly used in astronomy. Further specificationsfor
time units are given in Sect. 9.3. The recommended plain-text
form for the IAU-recognizedbase unitsare given in Column 2
of both tables.6 All base units stringsmaybe preceded, with no
intervening spaces, by a single character (two for deca) taken
from Table 5 and representing scale factors mostly in steps of
103. Compound prefixes (e.g.,ZYeV for 1045 eV) must notbe
used.

4.3.1. Construction of units strings

Compound units stringsmay be formed by combining strings
of base units (including prefixes, if any) with the recommended
syntax described in Table 6. Two or more base units strings
(called str1 and str2 in Table 6) may be combined using
the restricted set of (explicit or implicit) operators thatprovide
for multiplication, division, exponentiation, raising arguments to
powers, or taking the logarithm or square-root of an argument.
Note that functions such aslog actually require dimension-
less arguments, so thatlog(Hz), for example, actually means
log(x/1 Hz). The final units string is the compound string, or
a compound of compounds, preceded by anoptional numeric
multiplier of the form10**k , 10ˆk, or 10±k wherek is an inte-
ger,optionallysurrounded by parentheses with the sign character
requiredin the third form in the absence of parentheses. Creators
of FITSfiles are encouraged to use the numeric multiplier only
when the available standard scale factors of Table 5 will notsuf-
fice. Parentheses are used for symbol grouping and are strongly

6 These tables are reproduced from the first in a series of papers
on world-coordinate systems (Greisen & Calabretta 2002), which pro-
vides examples and expanded discussion.

Table 5: Prefixes for multiples and submultiples.

Submult Prefix Char Mult Prefix Char

10−1 deci d 10 deca da

10−2 centi c 102 hecto h

10−3 milli m 103 kilo k

10−6 micro u 106 mega M

10−9 nano n 109 giga G

10−12 pico p 1012 tera T

10−15 femto f 1015 peta P

10−18 atto a 1018 exa E

10−21 zepto z 1021 zetta Z

10−24 yocto y 1024 yotta Y

recommendedwhenever the order of operations might be sub-
ject to misinterpretation. A space character implies multiplica-
tion, which can also be conveyed explicitly with an asteriskor a
period. Therefore, although spaces are allowed as symbol sepa-
rators, their use is discouraged. Note that, per IAU convention,
case is significant throughout. The IAU style manual forbidsthe
use of more than one slash (’/’) character in a units string.
However, since normal mathematical precedence rules applyin
this context, more than one slashmaybe used but is discouraged.

A unit raised to a power is indicated by the unit string fol-
lowed, with no intervening spaces, by theoptionalsymbols** or
ˆ followed by the power given as a numeric expression, called
expr in Table 6. The powermay be a simple integer, with or
without sign,optionallysurrounded by parentheses. Itmayalso
be a decimal number (e.g.,1.5, 0.5) or a ratio of two integers
(e.g.,7/9), with or without sign, whichmustbe surrounded by
parentheses. Thus meters squaredmaybe indicated bym**(2),
m**+2, m+2, m2, mˆ2, mˆ(+2), etc. and per meter cubedmaybe
indicated bym**-3, m-3, mˆ(-3), /m3, and so forth. Meters to
the three-halves powermaybe indicated bym(1.5), mˆ(1.5),
m**(1.5), m(3/2), m**(3/2), andmˆ(3/2), butnot by ms/2
or m1.5.

4.3.2. Units in comment fields

If the units of the keyword value are specified in the comment of
the header keyword, it isrecommendedthat the units string be
enclosed in square brackets (i.e., enclosed by ‘[’ and ‘]’) at the
beginning of the comment field, separated from the slash (’/’)
comment field delimiter by a single space character. An exam-
ple, using a non-standard keyword, is
EXPTIME = 1200. / [s] exposure time in seconds

This widespread, butoptional, practice suggests that square
bracketsshouldbe used in comment fields only for this pur-
pose. Nonetheless, softwareshould notdepend on units being
expressed in this fashion within a keyword comment, and soft-
wareshould notdepend on any string within square brackets in
a comment field containing a proper units string.

4.4. Keywords

4.4.1. Mandatory keywords

Mandatory keywords arerequired in every HDU as described
in the remainder of this subsection. Theymustbe used only as
described in this Standard. Values of the mandatory keywords
mustbe written in fixed-format.

10

Table 6: Characters and strings allowed to denote mathematical
operations.

String Meaning

str1 str2 Multiplication
str1*str2 Multiplication
str1.str2 Multiplication
str1/str2 Division
str1**expr Raised to the powerexpr
str1ˆexpr Raised to the powerexpr
str1expr Raised to the powerexpr
log(str1) Common Logarithm (to base 10)
ln(str1) Natural Logarithm
exp(str1) Exponential (estr1)
sqrt(str1) Square root

Table 7: Mandatory keywords for primary header.

Position Keyword

1 SIMPLE = T

2 BITPIX

3 NAXIS

4 NAXISn, n = 1, . . . ,NAXIS
.
..

(other keywords)
...

last END

Table 8: Interpretation of validBITPIX value.

Value Data represented

8 Character or unsigned binary integer
16 16-bit two’s complement binary integer
32 32-bit two’s complement binary integer
64 64-bit two’s complement binary integer
−32 IEEE single-precision floating point
−64 IEEE double-precision floating point

4.4.1.1. Primary header

The SIMPLE keyword is required to be the first keyword
in the primary header of allFITSfiles. The primary headermust
contain the other mandatory keywords shown in Table 7 in the
order given. Other keywordsmust notintervene between the
SIMPLE keyword and the lastNAXISn keyword.

SIMPLE keyword. The value fieldshall contain a logical con-
stant with the valueT if the file conforms to this Standard. This
keyword is mandatory for the primary header andmust notap-
pear in extension headers.7 A value of F signifies that the file
does not conform to this Standard.

BITPIX keyword. The value fieldshall contain an integer. The
absolute value is used in computing the sizes of data structures.
It shall specify the number of bits that represent a data value in
the associated data array. The only valid values ofBITPIX are

7 This requirement differs from the wording in the originalFITSpa-
pers. See Appendix H.

given in Table 8. Writers ofFITSarraysshouldselect aBITPIX
data type appropriate to the form, range of values, and accuracy
of the data in the array.

NAXIS keyword. The value fieldshall contain a non-negative
integer no greater than 999 representing the number of axes in
the associated data array. A value of zero signifies that no data
follow the header in the HDU.

NAXISn keywords. TheNAXISn keywordsmustbe present for
all valuesn = 1, . . . ,NAXIS, in increasing order ofn, and for
no other values ofn. The value field of this indexed keyword
shall contain a non-negative integer representing the number of
elements along Axisn of a data array. A value of zero for any of
theNAXISn signifies that no data follow the header in the HDU
(however, the random-groups structure described in Sect. 6has
NAXIS1 = 0, but will have data following the header if the other
NAXISn keywords are non-zero). IfNAXIS is equal to0, there
shall notbe anyNAXISn keywords.

END keyword. This keyword has no associated value. Bytes 9
through 80shallbe filled with ASCII spaces (decimal 32 or hex-
adecimal 20). TheEND keyword marks the logical end of the
header andmustoccur in the last 2880-byteFITS block of the
header.

The total number of bits in the primary data array, exclusive
of fill that is needed after the data to complete the last 2880-byte
data block (Sect. 3.3.2), is given by the following expression:

Nbits = |BITPIX| × (NAXIS1× NAXIS2 × · · · × NAXISm), (1)

whereNbits mustbe non-negative and is the number of bits ex-
cluding fill, m is the value ofNAXIS, andBITPIX and theNAXISn
represent the values associated with those keywords. Note that
the random-groups convention in the primary array has a more-
complicated structure whose size is given by Eq. 4. The header
of the firstFITSextension in the file, if present,shall start with
the firstFITS block following the data block that contains the
last bit of the primary data array.

An example of a primary array header is shown in Table 9.
In addition to the required keywords, it includes a few of the
reserved keywords that are discussed in Sect. 4.4.2.

4.4.1.2. Conforming extensions

All conforming extensions, whether or not further speci-
fied in this Standard,mustuse the keywords defined in Table 10
in the order specified. Other keywordsmust not intervene
between theXTENSION keyword and theGCOUNT keyword.
TheBITPIX, NAXIS, NAXISn, andEND keywords are defined in
Sect. 4.4.1.

XTENSION keyword. The value fieldshall contain a character
string giving the name of the extension type. This keyword is
mandatory for an extension header andmust notappear in the
primary header.7 To preclude conflict, extension type names
mustbe registered with the IAUFWG. The current list of reg-
istered extensions is given in Appendix F. An up-to-date list is
also maintained on theFITSSupport Office website.

11

Table 9: Example of a primary array header.

Keyword records

SIMPLE = T / file does conform to FITS Standard

BITPIX = 16 / number of bits per data pixel

NAXIS = 2 / number of data axes

NAXIS1 = 250 / length of data axis 1

NAXIS2 = 300 / length of data axis 2

OBJECT = 'Cygnus X-1'

DATE = '2006-10-22'

END

PCOUNT keyword. The value fieldshall contain an integer that
shallbe used in any way appropriate to define the data structure,
consistent with Eq. 2. InIMAGE (Sect. 7.1) andTABLE (Sect. 7.2)
extensions this keywordmusthave the value0; in BINTABLE

extensions (Sect. 7.3) it is used to specify the number of bytes
that follow the main data table in the supplemental data area
called the heap. This keyword is also used in the random-groups
structure (Sect. 6) to specify the number of parameters preceding
each array in a group.

GCOUNT keyword. The value fieldshall contain an integer that
shall be used in any way appropriate to define the data struc-
ture, consistent with Eq. 2. This keywordmusthave the value1
in theIMAGE,TABLE, andBINTABLE standard extensions defined
in Sect. 7. This keyword is also used in the random-groups struc-
ture (Sect. 6) to specify the number of random groups present.

The total number of bits in the extension data array (exclu-
sive of fill that is needed after the data to complete the last 2880-
byte data block) is given by the following expression:

Nbits = |BITPIX| × GCOUNT ×

(PCOUNT + NAXIS1 × NAXIS2 × · · · × NAXISm), (2)

whereNbits mustbe non-negative and is the number of bits ex-
cluding fill; m is the value ofNAXIS; and BITPIX, GCOUNT,
PCOUNT, and theNAXISn represent the values associated with
those keywords. IfNbits > 0, then the data arrayshall be con-
tained in an integral number of 2880-byteFITSdata blocks. The
header of the nextFITS extension in the file, if any,shall start
with the firstFITS block following the data block that contains
the last bit of the current extension data array.

4.4.2. Other reserved keywords

The reserved keywords described below areoptional, but if
present in the header theymustbe used only as defined in this
Standard. They apply to anyFITS structure with the meanings
and restrictions defined below. AnyFITS structuremayfurther
restrict the use of these keywords.

4.4.2.1. General descriptive keywords

DATE keyword. The value fieldshall contain a character string
giving the date on which the HDU was created, in the form
YYYY-MM-DD, or the date and time when the HDU was created, in
the formYYYY-MM-DDThh:mm:ss[.sss. . .], whereYYYY shall
be the four-digit calendar year number,MM the two-digit month
number with January given by 01 and December by 12, andDD

Table 10: Mandatory keywords in conforming extensions.

Position Keyword

1 XTENSION

2 BITPIX

3 NAXIS

4 NAXISn, n = 1, . . . ,NAXIS
5 PCOUNT

6 GCOUNT

...

(other keywords)
...

last END

the two-digit day of the month. When both date and time are
given, the literalT shall separate the date and time,hh shall
be the two-digit hour in the day,mm the two-digit number of
minutes after the hour, andss[.sss. . .] the number of seconds
(two digits followed by anoptional fraction) after the minute.
Default valuesmust notbe given to any portion of the date/time
string, and leading zerosmust notbe omitted. The decimal part
of the seconds field isoptional and may be arbitrarily long,
so long as it is consistent with the rules for value formats of
Sect. 4.2. Otherwise said, the format forDATE keywords writ-
ten after January 1, 2000shall be the ISO-8601datetimeform
described in Sect. 9.1.1. See also Sect. 9.5.

The value of theDATE keywordshallalways be expressed in
UTC when in this format, for all data sets created on Earth.

The following formatmay appear on files written before
January 1, 2000. The value field contains a character string
giving the date on which the HDU was created, in the form
DD/MM/YY, whereDD is the day of the month,MM the month
number with January given by 01 and December by 12, andYY

the last two digits of the year, the first two digits being under-
stood to be 19. Specification of the date using Universal Timeis
recommendedbut not assumed.

When a newly created HDU is substantially a verbatim copy
of another HDU, the value of theDATE keyword in the original
HDU maybe retained in the new HDU instead of updating the
value to the current date and time.

ORIGIN keyword. The value fieldshall contain a character
string identifying the organization or institution responsible for
creating theFITSfile.

EXTEND keyword. The value fieldshall contain a logical value
indicating whether theFITSfile is allowed to contain conform-

12

ing extensions following the primary HDU. This keywordmay
only appear in the primary header andmust notappear in an ex-
tension header. If the value field isT then theremaybe conform-
ing extensions in theFITSfile following the primary HDU. This
keyword is only advisory, so its presence with a valueT does
not require that theFITS file contains extensions, nor does the
absence of this keyword necessarily imply that the file does not
contain extensions. Earlier versions of this Standard stated that
theEXTEND keywordmustbe present in the primary header if the
file contained extensions, but this is no longerrequired.

BLOCKED keyword. This keyword is deprecated andshould not
be used in newFITSfiles. It is reserved primarily to prevent its
use with other meanings. As previously defined, this keyword, if
used, wasrequiredto appear only within the first 36 keywords in
the primary header. Its presence with therequiredlogical value
of T advised that the physical block size of theFITSfile on which
it appearsmaybe an integral multiple of theFITS block length
and not necessarily equal to it.

4.4.2.2. Keywords describing observations

DATE-OBS keyword. The format of the value field for
DATE-OBS keywordsshall follow the prescriptions for theDATE
keyword (Sect. 4.4.2 and Sect. 9.1.1 Either the four-digit year
format or the two-digit year formatmaybe used for observation
dates from 1900 through 1999, although the four-digit format is
recommended.

When the format with a four-digit year is used, the default in-
terpretations for timeshouldbe UTC for dates beginning 1972-
01-01 and UT before. Other date and time scales are permissible.
The value of theDATE-OBS keywordshall be expressed in the
principal time system or time scale of the HDU to which it be-
longs; if there is any chance of ambiguity, the choiceshouldbe
clarified in comments. The value ofDATE-OBS shallbe assumed
to refer to the start of an observation, unless another interpreta-
tion is clearly explained in the comment field. Explicit specifi-
cation of the time scale isrecommended. By default, times for
TAI and times that run simultaneously with TAI, e.g., UTC and
TT, will be assumed to be as measured at the detector (or, in
practical cases, at the observatory). For coordinate timessuch as
TCG, TCB, and TDB, the defaultshall be to include light-time
corrections to the associated spatial origin, namely the geocen-
ter for TCG and the Solar System barycenter for the other two.
Conventionsmaybe developed that use other time systems. Time
scales are now discussed in detail in Sect. 9.2.1 and Table 30.

When the value ofDATE-OBS is expressed in the two-digit
year form, allowed for files written before January 1, 2000 with
a year in the range 1900–1999, there is no default assumptionas
to whether it refers to the start, middle or end of an observation.

DATExxxx keywords. The value fields for all keywords begin-
ning with the stringDATE whose value contains date, andop-
tionally time, informationshall follow the prescriptions for the
DATE-OBS keyword. See also Sect. 9.1.1 for thedatetimeformat,
and Sect. 9.5 for further global time keywords specified by the
Standard.

TELESCOP keyword. The value fieldshall contain a character
string identifying the telescope used to acquire the data associ-
ated with the header.

INSTRUME keyword. The value fieldshall contain a character
string identifying the instrument used to acquire the data associ-
ated with the header.

OBSERVER keyword. The value fieldshall contain a charac-
ter string identifying who acquired the data associated with the
header.

OBJECT keyword. The value fieldshall contain a character
string giving a name for the object observed.

4.4.2.3. Bibliographic keywords

AUTHOR keyword. The value fieldshall contain a character
string identifying who compiled the information in the dataas-
sociated with the header. This keyword is appropriate when the
data originate in a published paper or are compiled from many
sources.

REFERENC keyword. The value field shall contain a char-
acter string citing a reference where the data associ-
ated with the header are published. It isrecommended
that either the 19-digit bibliographic identifier8 used in
the Astrophysics Data System bibliographic databases
(http://adswww.harvard.edu/) or the Digital Object
Identifier (http://doi.org) be included in the value
string, when available (e.g.,’1994A&AS..103..135A’ or
’doi:10.1006/jmbi.1998.2354’).

4.4.2.4. Commentary keywords

These keywords provide commentary information about the
contents or history of theFITSfile andmayoccur any number of
times in a header. These keywordsshallhave no associated value
even if the value indicator characters`= ' appear in Bytes 9 and
10 (hence it isrecommendedthat these keywords not contain the
value indicator). Bytes 9 through 80maycontain any of the re-
stricted set of ASCII-text characters, decimal 32 through 126
(hexadecimal 20 through 7E).

In earlier versions of this Standard continued string key-
words (see Sect. 4.2.1.2) could be handled as commen-
tary keywords if the relevant convention was not supported.
Now CONTINUE keywordsshall be honoured as specified in
Sect. 4.2.1.2.

COMMENT keyword. This keywordmay be used to supply any
comments regarding theFITSfile.

8 This bibliographic convention (Schmitz et al. 1995) was initially
developed for use within NED (NASA/IPAC Extragalactic Database)
and SIMBAD (operated at CDS, Strasbourg, France).

13

http://adswww.harvard.edu/
http://doi.org

HISTORY keyword. This keywordshouldbe used to describe
the history of steps and procedures associated with the process-
ing of the associated data.

Keyword field is blank. This keywordmaybe used to supply
any comments regarding theFITS file. It is frequently used for
aesthetic purposes to provide a break between groups of related
keywords in the header.

A sequence of one or more entirely blank keyword records
(consisting of 80 ASCII space characters) that immediatelypre-
cede theEND keywordmaybe interpreted as non-significant fill
space thatmaybe overwritten when new keywords are appended
to the header. This usage convention enables an arbitrarilylarge
amount of header space to be preallocated when theFITSHDU
is first created, which can help mitigate the potentially time-
consuming alternative of having to shift all the following data
in the file by 2880 bytes to make room for a newFITS header
block each time space is needed for a new keyword.

4.4.2.5. Keywords that describe arrays

These keywords are used to describe the contents of an
array, either in the primary array, in anIMAGE extension
(Sect. 7.1), or in a series of random groups (Sect. 6). They are
optional, but if they appear in the header describing an array
or groups, theymustbe used as defined in this section of this
Standard. Theyshall not be used in headers describing other
structures unless the meaning is the same as defined here.

BSCALE keyword. This keywordshall be used, along with the
BZERO keyword, to linearly scale the array pixel values (i.e., the
actual values stored in theFITSfile) to transform them into the
physical values that they represent using Eq. 3.

physicalvalue = BZERO + BSCALE × arrayvalue. (3)

The value fieldshall contain a floating-point number represent-
ing the coefficient of the linear term in the scaling equation, the
ratio of physical value to array value at zero offset. The default
value for this keyword is1.0. Before support for IEEE floating-
point data types was added toFITS(Wells & Grosbøl 1990), this
technique of linearly scaling integer values was the only way to
represent the full range of floating-point values in aFITSarray.
This linear scaling technique is still commonly used to reduce
the size of the data array by a factor of two by representing 32-
bit floating-point physical values as 16-bit scaled integers.

BZERO keyword. This keywordshall be used, along with the
BSCALE keyword, to linearly scale the array pixel values (i.e., the
actual values stored in theFITSfile) to transform them into the
physical values that they represent using Eq. 3. The value field
shall contain a floating-point number representing the physical
value corresponding to an array value of zero. The default value
for this keyword is0.0.

Besides its use in representing floating-point values as scaled
integers (see the description of theBSCALE keyword), theBZERO
keyword is also used when storing unsigned-integer values in the
FITSarray. In this special case theBSCALE keywordshall have

the default value of1.0, and theBZERO keywordshall have one
of the integer values shown in Table 11.

Since theFITS format does not support a native unsigned
integer data type (except for the unsigned eight-bit byte data
type), the unsigned values are stored in theFITS array as na-
tive signed integers with the appropriate integer offset specified
by theBZERO keyword value shown in the table. For the byte
data type, the converse technique can be used to store signed
byte values as native unsigned values with the negativeBZERO

offset. In each case, the physical value is computed by adding
the offset specified by theBZERO keyword to the native data type
value that is stored in theFITSfile.9

BUNIT keyword. The value fieldshallcontain a character string
describing the physical units in which the quantities in thear-
ray, after application ofBSCALE andBZERO, are expressed. These
unitsmustfollow the prescriptions of Sect. 4.3.

BLANK keyword. This keywordshall be used only in headers
with positive values ofBITPIX (i.e., in arrays with integer data).
Bytes 1 through 8 contain the string`BLANK ' (ASCII spaces
in Bytes 6 through 8). The value fieldshall contain an integer
that specifies the value that is used within the integer arrayto
represent pixels that have an undefined physical value.

If the BSCALE andBZERO keywords do not have the default
values of1.0 and0.0, respectively, then the value of theBLANK
keyword must equal the actual value in theFITS data array
that is used to represent an undefined pixel and not the corre-
sponding physical value (computed from Eq. 3). To cite a spe-
cific, common example,unsigned16-bit integers are represented
in a signedintegerFITS array (withBITPIX = 16) by setting
BZERO = 32768 andBSCALE = 1. If it is desired to use pixels
that have anunsignedvalue (i.e., the physical value) equal to 0
to represent undefined pixels in the array, then theBLANK key-
word mustbe set to the value-32768 because that is the actual
value of the undefined pixels in theFITSarray.

DATAMAX keyword. The value fieldshall always contain a
floating-point number, regardless of the value ofBITPIX. This
numbershallgive the maximum valid physical value represented
by the array (from Eq. 3), exclusive of any IEEE special values.

DATAMIN keyword. The value fieldshall always contain a
floating-point number, regardless of the value ofBITPIX. This
numbershallgive the minimum valid physical value represented
by the array (from Eq. 3), exclusive of any IEEE special values.

WCS keywords. An extensive set of keywords have been de-
fined to describe the world coordinates associated with an array.
These keywords are discussed separately in Sect. 8.

9 A more computationally efficient method of adding or subtracting
the BZERO values is to simply flip the most-significant bit of the bi-
nary value. For example, using eight-bit integers, the decimal value 248
minus theBZERO value of128 equals 120. The binary representation
of 248 is 11111000. Flipping the most-significant bit gives the binary
value 01111000, which is equal to decimal 120.

14

Table 11: Usage ofBZERO to represent non-default integer data types.

BITPIX Native Physical BZERO

data type data type

8 unsigned signed byte -128 (−27)
16 signed unsigned 16-bit 32768 (215)
32 signed unsigned 32-bit 2147483648 (231)
64 signed unsigned 64-bit 9223372036854775808 (263)

4.4.2.6. Extension keywords

The next three keywords were originally defined for use
within the header of a conforming extension, however they also
mayappear in the primary header with an analogous meaning.
If these keywords are present, it isrecommendedthat they have
a unique combination of values in each HDU of theFITSfile.

EXTNAME keyword. The value fieldshall contain a character
string to be used to distinguish among different extensions of
the same type, i.e., with the same value ofXTENSION, in aFITS
file. Within this context, the primary arrayshouldbe considered
as equivalent to anIMAGE extension.

EXTVER keyword. The value fieldshall contain an integer to be
used to distinguish among different extensions in aFITSfile with
the same type and name, i.e., the same values forXTENSION and
EXTNAME. The values need not start with1 for the first extension
with a particular value ofEXTNAME and need not be in sequence
for subsequent values. If theEXTVER keyword is absent, the file
shouldbe treated as if the value were1.

EXTLEVEL keyword. The value fieldshall contain an integer
specifying the level in a hierarchy of extension levels of the ex-
tension header containing it. The valueshallbe1 for the highest
level; levels with a higher value of this keywordshall be subor-
dinate to levels with a lower value. If theEXTLEVEL keyword is
absent, the fileshouldbe treated as if the value were1.

The following keyword isoptional, but is reservedfor use
by the convention described in Appendix K. If present itshall
appear in the extension header immediately after the mandatory
keywords, and be used as described in the appendix.

INHERIT keyword. The value fieldshallcontain a logical value
of T or F to indicate whether or not the current extension should
inherit the keywords in the primary header of theFITSfile.

4.4.2.7 Data-integrity keywords

The two keywords described here provide an integrity check
on the information contained inFITSHDUs.

DATASUM keyword. The value field of theDATASUM keyword
shall consist of a character string thatshould contain the
unsigned-integer value of the 32-bit ones’ complement check-
sum of the data records in the HDU (i.e., excluding the header

records). For this purpose, each 2880-byteFITS logical record
shouldbe interpreted as consisting of 720 32-bit unsigned inte-
gers. The four bytes in each integermustbe interpreted in or-
der of decreasing significance where the most-significant byte is
first, and the least-significant byte is last. Accumulate thesum of
these integers using ones’ complement arithmetic in which any
overflow of the most-significant bit is propagated back into the
least-significant bit of the sum.

The DATASUM value is expressed as a character string (i.e.,
enclosed in single-quote characters) because support for the full
range of 32-bit unsigned-integer keyword values is problematic
in some software systems. This stringmaybe padded with non-
significant leading or trailing blank characters or leadingzeros.
A string containing only one or more consecutive ASCII blanks
may be used to represent an undefined or unknown value for
the DATASUM keyword. TheDATASUM keyword may be omit-
ted in HDUs that have no data records, but it is preferable to
include the keyword with a value of0. Otherwise, a missing
DATASUM keyword asserts no knowledge of the checksum of
the data records. Recording in the comment field the ISO-8601-
formatted Datetime (ISO 2004b) when the value of this keyword
record is created or updated isrecommended.

CHECKSUM keyword. The value field of theCHECKSUM keyword
shallconsist of an ASCII character string whose value forces the
32-bit ones’ complement checksum accumulated over the entire
FITS HDU to equal negative 0. (Note that ones’s complement
arithmetic has both positive and negative zero elements). It is
recommendedthat the particular 16-character string generated
by the algorithm described in Appendix J be used. A string con-
taining only one or more consecutive ASCII blanksmaybe used
to represent an undefined or unknown value for theCHECKSUM

keyword.

The CHECKSUM keyword valuemustbe expressed in fixed
format, when the algorithm in Appendix J is used, otherwise the
usage of fixed format isrecommended. Recording in the com-
ment field the ISO-8601-formatted Datetime when the value of
this keyword record is created or updated isrecommended.

If the CHECKSUM keyword exists in the header of the HDU
and the accumulated checksum is not equal to−0, or if the
DATASUM keyword exists in the header of the HDU and its value
does not match the data checksum, then this provides a strongin-
dication that the content of the HDU has changed subsequent to
the time that the respective keyword value was computed. Such
an invalid checksum may indicate corruption during a prior file
copy or transfer operation, or a corruption of the physical media
on which the file was stored. It may alternatively reflect an in-
tentional change to the data file by subsequent data processing if
theCHECKSUM value was not also updated.

15

Normally both keywords will be present in the header if either
is present, but this is notrequired. These keywords applyonly
to the HDU in which they are contained. If these keywords are
written in one HDU of a multi-HDUFITSfile then it isstrongly
recommendedthat they also be written to every other HDU in
the file with values appropriate to each HDU in turn; in that
case the checksum accumulated over the entire file will equal
−0 as well. TheDATASUM keywordmustbe updated before the
CHECKSUM keyword. In general updating the two checksum key-
wordsshouldbe the final step of any update to either data or
header records in aFITSHDU. It is highly recommendedthat if
aFITSfile is intended for public distribution, then the checksum
keywords, if present,shouldcontain valid values.

4.4.3. Additional keywords

New keywordsmay be devised in addition to those described
in this Standard, so long as they are consistent with the gener-
alized rules for keywords and do not conflict with mandatory
or reserved keywords. Any keyword that refers to or depends
upon the existence of other specific HDUs in the same or other
filesshouldbe used with caution because the persistence of those
HDUs cannot always be guaranteed.

5. Data representation

Primary and extension datashall be represented in one of the
formats described in this section.FITSdatashall be interpreted
to be a byte stream. Bytes are in big-endian order of decreasing
significance. The byte that includes the sign bitshallbe first, and
the byte that has the ones bitshallbe last.

5.1. Characters

Each charactershall be represented by one byte. A character
shall be represented by its seven-bit ASCII (ANSI 1977) code
in the low-order seven bits in the byte. The high-order bitshall
be zero.

5.2. Integers

5.2.1. Eight-bit

Eight-bit integersshallbe unsigned binary integers, contained in
one byte with decimal values ranging from 0 to 255.

5.2.2. Sixteen-bit

Sixteen-bit integersshallbe two’s complement signed binary in-
tegers, contained in two bytes with decimal values ranging from
−32768 to+32767.

5.2.3. Thirty-two-bit

Thirty-two-bit integersshallbe two’s complement signed binary
integers, contained in four bytes with decimal values ranging
from−2147483648 to+2147483647.

5.2.4. Sixty-four-bit

Sixty-four-bit integersshall be two’s complement signed binary
integers, contained in eight bytes with decimal values ranging
from−9223372036854775808 to+9223372036854775807.

5.2.5. Unsigned integers

TheFITSformat does not support a native unsigned integer data
type (except for the unsigned 8-bit byte data type) therefore un-
signed 16-bit, 32-bit, or 64-bit binary integers cannot be stored
directly in aFITSdata array. Instead, the appropriate offsetmust
be applied to the unsigned integer to shift the value into therange
of the corresponding signed integer, which is then stored inthe
FITS file. TheBZERO keywordshall record the amount of the
offset needed to restore the original unsigned value. TheBSCALE

keywordshallhave the default value of1.0 in this case, and the
appropriateBZERO value, as a function ofBITPIX, is specified
in Table 11.

This same techniquemustbe used when storing unsigned
integers in a binary-table column of signed integers (Sect.7.3.2).
In this case theTSCALn keyword (analogous toBSCALE) shall
have the default value of1.0, and the appropriateTZEROn value
(analogous toBZERO) is specified in Table 19.

5.3. IEEE-754 floating point

Transmission of 32- and 64-bit floating-point data within the
FITS format shall use the ANSI/IEEE-754 standard (IEEE
1985).BITPIX = -32 andBITPIX = -64 signify 32- and 64-bit
IEEE floating-point numbers, respectively; the absolute value of
BITPIX is used for computing the sizes of data structures. The
full IEEE set of number forms is allowed forFITS interchange,
including all special values.

TheBLANK keywordshould notbe used whenBITPIX= -32
or -64; rather, the IEEE NaNshouldbe used to represent an
undefined value. Use of theBSCALE and BZERO keywords is
not recommended.

Appendix E has additional details on the IEEE format.

5.4. Time

There is strictly no such thing as a data type fortime valueddata,
but rules to encode time values are given in Sect. 9 and in more
detail in Rots et al. (2015).

6. Random-groups structure

The random-groups structure allows a collection of ‘groups’,
where a group consists of a subarray of data and a set of as-
sociated parameter values, to be stored within theFITSprimary
data array. Random groups have been used almost exclusively
for applications in radio interferometry; outside this field, there
is little support for reading or writing data in this format.Other
than the existing use for radio interferometry data, the random-
groups structure is deprecated andshould notbe further used.
For other applications, the binary-table extension (Sect.7.3) pro-
vides a more extensible and better documented way of associat-
ing groups of data within a single data structure.

16

Table 12: Mandatory keywords in primary header preceding ran-
dom groups.

Position Keyword

1 SIMPLE = T

2 BITPIX

3 NAXIS

4 NAXIS1 = 0

5 NAXISn, n = 2, . . . , value ofNAXIS
...

(other keywords, whichmustinclude . . .)
GROUPS = T

PCOUNT

GCOUNT

.

..

last END

6.1. Keywords

6.1.1. Mandatory keywords

TheSIMPLE keyword isrequiredto be the first keyword in the
primary header of allFITS files, including those with random-
groups records. If the random-groups format records followthe
primary header, the keyword records of the primary headermust
use the keywords defined in Table 12 in the order specified. No
other keywordsmayintervene between theSIMPLE keyword and
the lastNAXISn keyword.

SIMPLE keyword. The keyword record containing this keyword
is structured in the same way as if a primary data array were
present (Sect. 4.4.1).

BITPIX keyword. The keyword record containing this keyword
is structured as prescribed in Sect. 4.4.1.

NAXIS keyword. The value fieldshall contain an integer rang-
ing from 1 to 999, representing one more than the number of
axes in each data array.

NAXIS1 keyword. The value fieldshall contain the integer0,
a signature of random-groups format indicating that there is no
primary data array.

NAXISn keywords (n = 2, . . . , value of NAXIS). TheNAXISn
keywordsmustbe present for all valuesn = 2, . . . ,NAXIS, in
increasing order ofn, and for no larger values ofn. The value
field shall contain an integer, representing the number of posi-
tions along Axisn− 1 of the data array in each group.

GROUPS keyword. The value fieldshallcontain the logical con-
stantT. The valueT associated with this keyword implies that
random-groups records are present.

PCOUNT keyword. The value fieldshallcontain an integer equal
to the number of parameters preceding each array in a group.

GCOUNT keyword. The value fieldshallcontain an integer equal
to the number of random groups present.

END keyword. This keyword has no associated value. Bytes 9
through 80shall contain ASCII spaces (decimal 32 or hexadec-
imal 20).

The total number of bits in the random-groups records exclu-
sive of the fill described in Sect. 6.2 is given by the following
expression:

Nbits = |BITPIX| × GCOUNT ×

(PCOUNT + NAXIS2 × NAXIS3 × · · · × NAXISm), (4)

whereNbits is non-negative and the number of bits excluding fill;
m is the value ofNAXIS; andBITPIX, GCOUNT, PCOUNT, and the
NAXISn represent the values associated with those keywords.

6.1.2. Reserved keywords

PTYPEn keywords. The value fieldshall contain a character
string giving the name of Parametern. If the PTYPEn keywords
for more than one value ofn have the same associated name in
the value field, then the data value for the parameter of that name
is to be obtained by adding the derived data values of the corre-
sponding parameters. This rule provides a mechanism by which
a random parametermayhave more precision than the accompa-
nying data array elements; for example, by summing two 16-bit
values with the first scaled relative to the other such that the sum
forms a number of up to 32-bit precision.

PSCALn keywords. This keywordshall be used, along with the
PZEROn keyword, when thenth FITS group parameter value is
not the true physical value, to transform the group parameter
value to the true physical values it represents, using Eq. 5.The
value fieldshallcontain a floating-point number representing the
coefficient of the linear term in Eq. 5, the scaling factor between
true values and group parameter values at zero offset. The default
value for this keyword is1.0.

PZEROn keywords. This keywordshall be used, along with the
PSCALn keyword, when thenth FITS group parameter value
is not the true physical value, to transform the group parame-
ter value to the physical value. The value fieldshall contain a
floating-point number, representing the true value correspond-
ing to a group parameter value of zero. The default value for this
keyword is0.0. The transformation equation is as follows:

physicalvalue = PZEROn+ PSCALn× groupparamvalue. (5)

6.2. Data sequence

Random-groups datashall consist of a set of groups. The num-
ber of groupsshall be specified by theGCOUNT keyword in the
associated header. Each groupshallconsist of the number of pa-
rameters specified by thePCOUNT keyword followed by an array
with the number of elementsNelem given by the following ex-
pression:

17

Nelem = (NAXIS2 × NAXIS3 × · · · × NAXISm), (6)

whereNelem is the number of elements in the data array in a
group,m is the value ofNAXIS, and theNAXISn represent the
values associated with those keywords.

The first parameter of the first groupshall appear in the first
location of the first data block. The first element of each array
shall immediately follow the last parameter associated with that
group. The first parameter of any subsequent groupshall imme-
diately follow the last element of the array of the previous group.
The arraysshall be organized internally in the same way as an
ordinary primary data array. If the groups data do not fill the
final data block, the remainder of the blockshall be filled with
zero values in the same way as a primary data array (Sect. 3.3.2).
If random-groups records are present, thereshall be no primary
data array.

6.3. Data representation

Permissible data representations are those listed in Sect.5.
Parameters and elements of associated data arraysshallhave the
same representation. If more precision is required for an associ-
ated parameter than for an element of a data array, the parameter
shall be divided into two or more addends, represented by the
same value for thePTYPEn keyword. The valueshallbe the sum
of the physical values, whichmayhave been obtained from the
group parameter values using thePSCALnandPZEROnkeywords.

7. Standard extensions

A standard extension is a conforming extension whose organiza-
tion and content are completely specified in this Standard. The
specifications for the three currently defined standard extensions,
namely,

1. IMAGE extensions;
2. TABLE ASCII-table extensions; and
3. BINTABLE binary-table extensions

are given in the following sections. A list of other conforming
extensions is given in Appendix F.

7.1. Image extension

TheFITSIMAGE extension is nearly identical in structure to the
the primary HDU and is used to store an array of data. Multiple
IMAGE extensions can be used to store any number of arrays in a
singleFITSfile. The first keyword record in anIMAGE extension
shallbeXTENSION= 'IMAGE '.

7.1.1. Mandatory keywords

The XTENSION keyword isrequired to be the first keyword of
all IMAGE extensions. The keyword records in the header of an
image extensionmustuse the keywords defined in Table 13 in
the order specified. No other keywordsmay intervene between
theXTENSION andGCOUNT keywords.

XTENSION keyword. The value fieldshall contain the character
string'IMAGE '.

Table 13: Mandatory keywords inIMAGE extensions.

Position Keyword

1 XTENSION= 'IMAGE '

2 BITPIX

3 NAXIS

4 NAXISn, n = 1, . . . ,NAXIS
5 PCOUNT = 0

6 GCOUNT = 1

..

.

(other keywords . . .)
...

last END

BITPIX keyword. The value fieldshall contain an integer. The
absolute value is used in computing the sizes of data structures.
It shall specify the number of bits that represent a data value.
The only valid values ofBITPIX are given in Table 8. Writers of
IMAGE extensionsshouldselect aBITPIX data type appropriate
to the form, range of values, and accuracy of the data in the array.

NAXIS keyword. The value fieldshall contain a non-negative
integer no greater than 999, representing the number of axesin
the associated data array. If the value is zero then theIMAGE

extensionshall nothave any data blocks following the header.

NAXISn keywords. TheNAXISn keywordsmustbe present for
all valuesn = 1, . . . ,NAXIS, in increasing order ofn, and for
no other values ofn. The value field of this indexed keyword
shall contain a non-negative integer, representing the number of
elements along Axisn of a data array. If the value of any of the
NAXISn keywords is zero, then theIMAGE extensionshall not
have any data blocks following the header. IfNAXIS is equal to
0 thereshould notbe anyNAXISn keywords.

PCOUNT keyword. The value fieldshallcontain the integer0.

GCOUNT keyword. The value fieldshall contain the integer1;
eachIMAGE extension contains a single array.

END keyword. This keyword has no associated value. Bytes 9
through 80shallbe filled with ASCII spaces (decimal 32 or hex-
adecimal 20).

7.1.2. Other reserved keywords

The reserved keywords defined in Sect. 4.4.2 (except forEXTEND

andBLOCKED) may appear in an image-extension header. The
keywordsmustbe used as defined in that section.

7.1.3. Data sequence

The data formatshallbe identical to that of a primary data array
as described in Sect. 3.3.2.

18

Table 14: Mandatory keywords in ASCII-table extensions.

Position Keyword

1 XTENSION= 'TABLE '

2 BITPIX = 8

3 NAXIS = 2

4 NAXIS1

5 NAXIS2

6 PCOUNT = 0

7 GCOUNT = 1

8 TFIELDS

.

..

(other keywords, including (ifTFIELDS is not zero) . . .)
TTYPEn, n = 1, 2, . . . , k, wherek is the value ofTFIELDS (recommended)
TBCOLn, n = 1, 2, . . . , k, wherek is the value ofTFIELDS (required)
TFORMn, n = 1, 2, . . . , k, wherek is the value ofTFIELDS (required)
...

last END

7.2. The ASCII-table extension

The ASCII-table extension provides a means of storing catalogs
and tables of astronomical data inFITS format. Each row of the
table consists of a fixed-length sequence of ASCII characters
divided into fields that correspond to the columns in the table.
The first keyword record in an ASCII-table extensionshall be
XTENSION= 'TABLE '.

7.2.1. Mandatory keywords

The header of an ASCII-table extensionmustuse the keywords
defined in Table 14. The first keywordmust be XTENSION;
the seven keywords followingXTENSION (BITPIX . . .TFIELDS)
mustbe in the order specified with no intervening keywords.

XTENSION keyword. The value fieldshall contain the character
string'TABLE '.

BITPIX keyword. The value fieldshall contain the integer8,
denoting that the array contains ASCII characters.

NAXIS keyword. The value fieldshallcontain the integer2, de-
noting that the included data array is two-dimensional: rows and
columns.

NAXIS1 keyword. The value fieldshall contain a non-negative
integer, giving the number of ASCII characters in each row of
the table. This includes all the characters in the defined fields
plus any characters that are not included in any field.

NAXIS2 keyword. The value fieldshall contain a non-negative
integer, giving the number of rows in the table.

PCOUNT keyword. The value fieldshallcontain the integer0.

GCOUNT keyword. The value fieldshall contain the integer1;
the data blocks contain a single table.

Table 15: ValidTFORMn format values inTABLE extensions.

Field value Data type

Aw Character
Iw Decimal integer

Fw.d Floating-point, fixed decimal notation
Ew.d Floating-point, exponential notation
Dw.d Floating-point, exponential notation

Notes.w is the width in characters of the field andd is the number of
digits to the right of the decimal.

TFIELDS keyword. The value fieldshallcontain a non-negative
integer representing the number of fields in each row. The max-
imum permissible value is 999.

TBCOLn keywords. TheTBCOLn keywordsmustbe present for
all valuesn = 1, . . . , TFIELDS and for no other values ofn.
The value field of this indexed keywordshall contain an integer
specifying the column in which Fieldn starts. The first column
of a row is numbered 1.

TFORMn keywords. TheTFORMn keywordsmustbe present for
all valuesn = 1, . . . , TFIELDS and for no other values ofn.
The value field of this indexed keywordshall contain a char-
acter string describing the format in which Fieldn is encoded.
Only the formats in Table 15, interpreted as Fortran (ISO 2004)
input formats and discussed in more detail in Sect. 7.2.5, are
permitted for encoding. Format codesmustbe specified in upper
case. Other format editing codes common to Fortran such as rep-
etition, positional editing, scaling, and field termination are not
permitted. All values in numeric fields have a number base of
ten (i.e., they are decimal); binary, octal, hexadecimal, and other
representations are not permitted. TheTDISPn keyword, defined
in Sect. 7.2.2,maybe used torecommendthat a decimal integer
value in an ASCII table be displayed as the equivalent binary,
octal, or hexadecimal value.

19

Table 16: ValidTDISPn format values inTABLE extensions.

Field value Data type

Aw Character
Iw.m Integer
Bw.m Binary, integers only
Ow.m Octal, integers only
Zw.m Hexadecimal, integers only
Fw.d Floating-point, fixed decimal notation

Ew.dEe Floating-point, exponential notation
ENw.d Engineering; E format with exponent multiple of three
ESw.d Scientific; same as EN but non-zero leading digit if not zero

Gw.dEe General; appears as F if significance not lost, else E.
Dw.dEe Floating-point, exponential notation

Notes.w is the width in characters of displayed values,m is the minimum number of digits displayed,d is the number of digits to right of decimal,
ande is number of digits in exponent. The.m andEe fields areoptional.

END keyword. This keyword has no associated value. Bytes 9
through 80shall contain ASCII spaces (decimal 32 or hexadec-
imal 20).

7.2.2. Other reserved keywords

In addition to the reserved keywords defined in Sect. 4.4.2 (ex-
cept for EXTEND and BLOCKED), the following other reserved
keywordsmay be used to describe the structure of an ASCII-
table data array. They areoptional, but if they appear within an
ASCII-table extension header, theymustbe used as defined in
this section of this Standard.

TTYPEn keywords. The value field for this indexed keyword
shall contain a character string giving the name of Fieldn. It
is strongly recommendedthat every field of the table be as-
signed a unique, case-insensitive name with this keyword, and
it is recommendedthat the character string be composed only
of upper- and lower-case letters, digits, and the underscore (’ ’,
decimal 95, hexadecimal 5F) character. Use of other characters is
not recommendedbecause it may be difficult to map the column
names into variables in some languages (e.g., any hyphens,’*’

or ’+’ characters in the name may be confused with mathemat-
ical operators). String comparisons with theTTYPEn keyword
valuesshould notbe case sensitive (e.g.,’TIME’ and ’Time’
shouldbe interpreted as the same name).

TUNITn keywords. The value fieldshall contain a character
string describing the physical units in which the quantity in
Field n, after any application ofTSCALn and TZEROn, is ex-
pressed. Unitsmustfollow the prescriptions in Sect. 4.3.

TSCALn keywords. This indexed keywordshall be used, along
with theTZEROn keyword, to linearly scale the values in the ta-
ble Fieldn to transform them into the physical values that they
represent using Eq. 7. The value fieldshall contain a floating-
point number representing the coefficient of the linear term in
the scaling equation. The default value for this keyword is1.0.
This keywordmust notbe used for A-format fields.

The transformation equation used to compute a true physical
value from the quantity in Fieldn is

physicalvalue = TZEROn+ TSCALn× field value (7)

wherefield value is the value that is actually stored in that
table field in theFITSfile.

TZEROn keywords. This indexed keywordshall be used, along
with theTSCALnkeyword, to linearly scale the values in the table
Field n to transform them into the physical values that they rep-
resent using Eq. 7. The value fieldshall contain a floating-point
number representing the physical value corresponding to anar-
ray value of zero. The default value for this keyword is0.0. This
keywordmust notbe used for A-format fields.

TNULLn keywords. The value field for this indexed keyword
shall contain the character string that represents an undefined
value for Fieldn. The string is implicitly space filled to the width
of the field.

TDISPn keywords. The value field of this indexed keyword
shall contain a character string describing the format recom-
mended for displaying an ASCII-text representation of of the
contents of Fieldn. This keyword overrides the default display
format given by theTFORMn keyword. If the table value has been
scaled, the physical value, derived using Eq. 7,shall be dis-
played. All elements in a fieldshall be displayed with a single,
repeated format. Only the format codes in Table 16, interpreted
as Fortran (ISO 2004) output formats, and discussed in more de-
tail in Sect. 7.3.4, are permitted for encoding. The format codes
mustbe specified in upper case. If theBw.m, Ow.m, andZw.m
formats are not readily available to the reader, theIw.m display
formatmaybe used instead, and if theENw.d andESw.d formats
are not available,Ew.d maybe used.

The following four keywordsmaybe used to specify minimum
and maximum values in numerical columns of aFITSASCII or
binary table. These keywordsmusthave the same data type as
the physical values in the associated column (either an integer or
a floating-point number). Any undefined elements in the column
shallbe excluded when determining the value of these keywords.

TDMINn keywords. The value fieldshall contain a number giv-
ing the minimum physical value contained in Columnn of the
table. This keyword is analogous to theDATAMIN keyword that
is defined for arrays in Sect. 4.4.2.5.

20

TDMAXn keywords. The value fieldshall contain a number giv-
ing the maximum physical value contained in Columnn of the
table. This keyword is analogous to theDATAMAX keyword that
is defined for arrays in Sect. 4.4.2.5.

TLMINn keywords. The value fieldshall contain a number that
specifies the minimum physical value in Columnn that has
a valid meaning or interpretation. The column is notrequired
to actually contain any elements that have this value, and the
column may contain elements with physical values less than
TLMINn, however, the interpretation of any such out-of-range
column elements is not defined.

TLMAXn keywords. The value fieldshall contain a number that
specifies the maximum physical value in Columnn that has a
valid meaning or interpretation. The column is notrequired to
actually contain any elements that have this value, and the col-
umn may contain elements with physical values greater than
TLMAXn, however, the interpretation of any such out-of-range
column elements is not defined.

TheTLMINn andTLMAXn keywords are commonly used when
constructing histograms of the data values in a column. For ex-
ample, if a table contains columns that give theX andY pixel
location of a list of photons that were detected by a photon-
counting device, then theTLMINn andTLMAXn keywords could
be used respectively to specify the minimum and maximum val-
ues that the detector is capable of assigning to theX and Y
columns.

7.2.3. Data sequence

The table is constructed from a two-dimensional array of ASCII
characters. The row length and the number of rowsshallbe those
specified, respectively, by theNAXIS1 andNAXIS2 keywords of
the associated header. The number of characters in a row and the
number of rows in the tableshalldetermine the size of the char-
acter array. Every row in the arrayshallhave the same number of
characters. The first character of the first rowshallbe at the start
of the data block immediately following the last header block.
The first character of subsequent rowsshall follow immediately
the character at the end of the previous row, independent of the
FITS block structure. The positions in the last data block after
the last character of the last row of the tableshall be filled with
ASCII spaces.

7.2.4. Fields

Each row in the arrayshall consist of a sequence of from 0 to
999 fields, as specified by theTFIELDS keyword, with one entry
in each field. For every field, the Fortran (ISO 2004) format of
the information contained (given by theTFORMn keyword), the
location in the row of the beginning of the field (given by the
TBCOLn keyword), and (optionally, but strongly recommended)
the field name (given by theTTYPEn keyword),shall be speci-
fied in the associated header. The location and format of fields
shall be the same for every row. Fieldsmayoverlap, but this us-
age isnot recommended. Only a limited set of ASCII character
valuesmayappear within any field, depending on the field type
as specified below. Theremaybe characters in a table row that

are not included in any field, (e.g., between fields, or beforethe
first field or after the last field). Any seven-bit ASCII character
mayoccur in characters of a table row that are not included in a
defined field. A common convention is to include a space char-
acter between each field for added legibility if the table rowis
displayed verbatim. It is also permissible to add control charac-
ters, such as a carriage return or line-feed character, following
the last field in each row as a way of formatting the table if it is
printed or displayed by a text-editing program.

7.2.5. Entries

All data in an ASCII-table extension fieldshallbe ASCII text in
a format that conforms to the rules for fixed field input in Fortran
(ISO 2004) format, as described below. The only possible for-
matsshall be those specified in Table 15. If values of−0 and
+0 need to be distinguished, then the sign charactershouldap-
pear in a separate field in character format.TNULLn keywords
maybe used to specify a character string that represents an un-
defined value in each field. The characters representing an unde-
fined valuemaydiffer from field to field butmustbe the same
within a field. Writers of ASCII tablesshouldselect a format for
each field that is appropriate to the form, range of values, and
accuracy of the data in that field. This Standard does not impose
an upper limit on the number of digits of precision, nor any limit
on the range of numeric values. Software packages that read or
write data according to this Standard could be limited, however,
in the range of values and exponents that are supported (e.g.,
to the range that can be represented by 32-bit or 64-bit binary
numbers).

The value of each entryshall be interpreted as described in
the following paragraphs.

Character fields. The value of a character-formatted (Aw) field
is a character string of widthw containing the characters in
columnsTBCOLn throughTBCOLn+ w − 1. The character string
shall be composed of the restricted set of ASCII-text characters
with decimal values in the range 32 through 126 (hexadecimal
20 through 7E).

Integer fields. The value of an integer-formatted (Iw) field is a
signed decimal integer contained in ColumnsTBCOLn through
TBCOLn+ w− 1 consisting of a singleoptionalsign (’+’ or ’-’)
followed by one or more decimal digits (’0’ through’9’). Non-
significant space charactersmayprecede and/or follow the inte-
ger value within the field. A blank field has value 0. All charac-
ters other than leading and trailing spaces, a contiguous string of
decimal digits, and a single leading sign character are forbidden.

Real fields. The value of a real-formatted field (Fw.d, Ew.d,
Dw.d) is a real number determined from thew characters from
ColumnsTBCOLn throughTBCOLn+ w − 1. The value is formed
by

1. discarding any trailing space characters in the field and right-
justifying the remaining characters,

2. interpreting the first non-space characters as a numeric string
consisting of a singleoptional sign (’+’ or ’-’) followed
by one or more decimal digits (’0’ through’9’) optionally
containing a single decimal point (’.’). The numeric string

21

is terminated by the end of the right-justified field or by the
occurrence of any character other than a decimal point (’.’)
and the decimal integers (’0’ through’9’). If the string
contains no explicit decimal point, then the implicit deci-
mal point is taken as immediately preceding the rightmost
d digits of the string, with leading zeros assumed if neces-
sary. The use of implicit decimal points isdeprecatedand
is strongly discouraged because of the possibility thatFITS-
reading programs will misinterpret the data value. Therefore,
real-formatted fieldsshouldalways contain an explicit deci-
mal point.

3. If the numeric string is terminated by a
(a) ’+’ or ’-’, interpreting the following string as an expo-

nent in the form of a signed decimal integer, or
(b) ’E’, or’D’, interpreting the following string as an expo-

nent of the formE or D followed by anoptionallysigned
decimal integer constant.

4. The exponent string, if present, is terminated by the end of
the right-justified string.

5. Characters other than those specified above, including em-
bedded space characters, are forbidden.

The numeric value of the table field is then the value of the nu-
meric string multiplied by ten (10) to the power of the exponent
string, i.e., value= numericstring× 10(exponentstring). The default
exponent is zero and a blank field has value zero. There is no dif-
ference between theF, D, andE formats; the content of the string
determines its interpretation. Numbers requiring more precision
and/or range than the local computer can supportmaybe rep-
resented. It is good form to specify aD format inTFORMn for a
column of an ASCII table when that column will contain num-
bers that cannot be accurately represented in 32-bit IEEE binary
format (see Appendix E).

7.3. Binary-table extension

The binary-table extension is similar to the ASCII table in that it
provides a means of storing catalogs and tables of astronomical
data inFITS format, however, it offers more features and pro-
vides more-efficient data storage than ASCII tables. The numer-
ical values in binary tables are stored in more-compact binary
formats rather than coded into ASCII, and each field of a binary
table can contain an array of values rather than a simple scalar
as in ASCII tables. The first keyword record in a binary-table
extensionshallbeXTENSION= 'BINTABLE'.

7.3.1. Mandatory keywords

The XTENSION keyword is the first keyword of all binary-
table extensions. The seven keywords following (BITPIX

. . .TFIELDS) mustbe in the order specified in Table 17, with
no intervening keywords.

XTENSION keyword. The value fieldshall contain the character
string'BINTABLE'.

BITPIX keyword. The value fieldshall contain the integer8,
denoting that the array is an array of eight-bit bytes.

NAXIS keyword. The value fieldshallcontain the integer2, de-
noting that the included data array is two-dimensional: rows and
columns.

NAXIS1 keyword. The value fieldshall contain a non-negative
integer, giving the number of eight-bit bytes in each row of the
table.

NAXIS2 keyword. The value fieldshall contain a non-negative
integer, giving the number of rows in the table.

PCOUNT keyword. The value fieldshall contain the number of
bytes that follow the table in the supplemental data area called
the heap.

GCOUNT keyword. The value fieldshall contain the integer1;
the data blocks contain a single table.

TFIELDS keyword. The value fieldshallcontain a non-negative
integer representing the number of fields in each row. The max-
imum permissible value is 999.

TFORMn keywords. TheTFORMn keywordsmustbe present for
all valuesn = 1, . . . , TFIELDS and for no other values ofn.
The value field of this indexed keywordshall contain a char-
acter string of the formrTa. The repeat countr is the ASCII
representation of a non-negative integer specifying the number
of elements in Fieldn. The default value ofr is 1; the repeat
count need not be present if it has the default value. A zero el-
ement count, indicating an empty field, is permitted. The data
typeT specifies the data type of the contents of Fieldn. Only the
data types in Table 18 are permitted. The format codesmustbe
specified in upper case. For fields of typeP or Q, the only per-
mitted repeat counts are0 and1. The additional charactersa are
optional and are not further defined in this Standard. Table 18
lists the number of bytes each data type occupies in a table row.
The first field of a row is numbered 1. The total number of bytes
nrow in a table row is given by

nrow =

TFIELDS
∑

i=1

r ibi (8)

wherer i is the repeat count for Fieldi, bi is the number of bytes
for the data type in Fieldi, andTFIELDS is the value of that
keyword,mustequal the value ofNAXIS1.

END keyword. This keyword has no associated value. Bytes 9
through 80shall contain ASCII spaces (decimal 32 or hexadec-
imal 20).

7.3.2. Other reserved keywords

In addition to the reserved keywords defined in Sect. 4.4.2 (ex-
cept for EXTEND and BLOCKED), the following other reserved
keywordsmaybe used to describe the structure of a binary-table

22

Table 17: Mandatory keywords in binary-table extensions.

Position Keyword

1 XTENSION= 'BINTABLE'

2 BITPIX = 8

3 NAXIS = 2

4 NAXIS1

5 NAXIS2

6 PCOUNT

7 GCOUNT = 1

8 TFIELDS

.

..

(other keywords, including (ifTFIELDS is not zero) . . .)
TTYPEn, n = 1, 2, . . . , k, wherek is the value ofTFIELDS (recommended)
TFORMn, n = 1, 2, . . . , k, wherek is the value ofTFIELDS (required)
...

last END

Table 18: ValidTFORMn data types inBINTABLE extensions.

TFORMn value Description Eight-bit Bytes

’L’ Logical 1
’X’ Bit †
’B’ Unsigned byte 1
’I’ 16-bit integer 2
’J’ 32-bit integer 4
’K’ 64-bit integer 8
’A’ Character 1
’E’ Single-precision floating point 4
’D’ Double-precision floating point 8
’C’ Single-precision complex 8
’M’ Double-precision complex 16
’P’ Array Descriptor (32-bit) 8
’Q’ Array Descriptor (64-bit) 16

Notes.(†) Number of eight-bit bytes needed to contain all bits.

data array. They areoptional, but if they appear within a binary-
table extension header, theymustbe used as defined in this sec-
tion of this Standard.

TTYPEn keywords. The value field for this indexed keyword
shall contain a character string giving the name of Fieldn. It
is strongly recommendedthat every field of the table be as-
signed a unique, case-insensitive name with this keyword, and
it is recommendedthat the character string be composed only
of upper- and lower-case letters, digits, and the underscore (’ ’,
decimal 95, hexadecimal 5F) character. Use of other characters is
not recommendedbecause it may be difficult to map the column
names into variables in some languages (e.g., any hyphens,’*’

or ’+’ characters in the name may be confused with mathemat-
ical operators). String comparisons with theTTYPEn keyword
valuesshould notbe case sensitive (e.g.,’TIME’ and ’Time’
shouldbe interpreted as the same name).

TUNITn keywords. The value fieldshall contain a character
string describing the physical units in which the quantity in
Field n, after any application ofTSCALn and TZEROn, is ex-
pressed. Unitsmustfollow the prescriptions in Sect. 4.3.

TSCALn keywords. This indexed keywordshall be used, along
with theTZEROn keyword, to linearly scale the values in the ta-
ble Fieldn to transform them into the physical values that they
represent using Eq. 7. Itmust notbe used if the format of Fieldn
is ’A’, ’L’, or’X’. For fields with all other data types, the value
field shall contain a floating-point number representing the co-
efficient of the linear term in Eq. 7, which is used to compute
the true physical value of the field, or, in the case of the complex
data types’C’ and’M’, of the real part of the field, with the
imaginary part of the scaling factor set to zero. The defaultvalue
for this keyword is1.0. For fields of type’P’ or ’Q’, the values
of TSCALn andTZEROn are to be applied to the values in the data
array in the heap area, not the values of the array descriptor(see
Sect. 7.3.5).

TZEROn keywords. This indexed keywordshall be used, along
with theTSCALn keyword, to linearly scale the values in the ta-
ble Fieldn to transform them into the physical values that they
represent using Eq. 7. Itmust notbe used if the format of Fieldn
is ’A’, ’L’, or’X’. For fields with all other data types, the value
field shall contain a floating-point number representing the true
physical value corresponding to a value of zero in Fieldn of the
FITSfile, or, in the case of the complex data types’C’ and’M,
in the real part of the field, with the imaginary part set to zero.
The default value for this keyword is0.0. Equation 7 is used to
compute a true physical value from the quantity in Fieldn. For
fields of type’P’ or ’Q’, the values ofTSCALn andTZEROn are
to be applied to the values in the data array in the heap area, not
the values of the array descriptor (see Sect. 7.3.5).

In addition to its use in representing floating-point values
as scaled integers, theTZEROn keyword is also used when stor-
ing unsigned integer values in the field. In this special casethe
TSCALn keyword shall have the default value of1.0 and the
TZEROn keywordshall have one of the integer values shown in
Table 19.

Since the binary-table format does not support a native un-
signed integer data type (except for the unsigned eight-bit’B’

column type), the unsigned values are stored in the field as na-
tive signed integers with the appropriate integer offset specified
by theTZEROn keyword value shown in the table. For the byte
column type, the converse technique can be used to store signed
byte values as native unsigned values with the negativeTZEROn

23

Table 19: Usage ofTZEROn to represent non-default integer data types.

TFORMn Native Physical TZEROn
data type data type

’B’ unsigned signed byte -128 (−27)
’I’ signed unsigned 16-bit 32768 (215)
’J’ signed unsigned 32-bit 2147483648 (231)
’K’ signed unsigned 64-bit 9223372036854775808 (263)

offset. In each case, the physical value is computed by adding the
offset specified by theTZEROn keyword to the native data type
value that is stored in the table field.

TNULLn keywords. The value field for this indexed keyword
shall contain the integer that represents an undefined value for
Field n of Data TypeB, I, J or K, or P or Q array-descriptor
fields (Sect. 7.3.5) that point toB, I, J, or K integer arrays. The
keywordmust notbe used if Fieldn is of any other data type.
The value of this keyword corresponds to the table column val-
ues before applying any transformation indicated by theTSCALn
andTZEROn keywords.

If the TSCALn and TZEROn keywords do not have the de-
fault values of1.0 and0.0, respectively, then the value of the
TNULLn keyword mustequal the actual value in theFITS file
that is used to represent an undefined element and not the cor-
responding physical value (computed from Eq. 7). To cite a
specific, common example,unsigned16-bit integers are repre-
sented in asignedinteger column (withTFORMn = ’I’) by set-
ting TZEROn = 32768 andTSCALn = 1. If it is desired to use
elements that have anunsignedvalue (i.e., the physical value)
equal to 0 to represent undefined elements in the field, then the
TNULLn keywordmustbe set to the value-32768 because that is
the actual value stored in theFITSfile for those elements in the
field.

TDISPn keywords. The value field of this indexed keyword
shall contain a character string describing the format recom-
mended for displaying an ASCII-text representation of the con-
tents of Fieldn. If the table value has been scaled, the physical
value, derived using Eq. 7,shall be displayed. All elements in a
field shall be displayed with a single, repeated format. For pur-
poses of display, each byte of bit (TypeX) and byte (TypeB)
arrays is treated as an unsigned integer. Arrays of TypeA maybe
terminated with a zero byte. Only the format codes in Table 20,
interpreted as Fortran (ISO 2004) output formats, and discussed
in more detail in Sect. 7.3.4, are permitted for encoding. The
format codesmustbe specified in upper case. If theBw.m, Ow.m,
andZw.m formats are not readily available to the reader, theIw.m

display formatmaybe used instead, and if theENw.d andESw.d
formats are not available,Ew.dmaybe used. In the case of fields
of TypeP orQ, theTDISPnvalue applies to the data array pointed
to by the array descriptor (Sect. 7.3.5), not the values in the array
descriptor itself.

THEAP keyword. The value field of this keywordshall contain
an integer providing the separation, in bytes, between the start
of the main data table and the start of a supplemental data area
called the heap. The default value, which is also the minimum
allowed value,shall be the product of the values ofNAXIS1 and

NAXIS2. This keywordshall notbe used if the value ofPCOUNT
is 0. The use of this keyword is described in in Sect. 7.3.5.

TDIMn keywords. The value field of this indexed keywordshall
contain a character string describing how to interpret the con-
tents of Fieldn as a multi-dimensional array with a format of
’(l,m,n...)’, wherel, m, n, . . . are the dimensions of the ar-
ray. The data are ordered such that the array index of the first
dimension given (l) is the most rapidly varying, and that of the
last dimension given is the least rapidly varying. The totalnum-
ber of elements in the array equals the product of the dimensions
specified in theTDIMn keyword. The sizemustbe less than or
equal to the repeat count in theTFORMn keyword, or, in the case
of columns that have a’P’ or’Q’ TFORMndata type, less than or
equal to the array length specified in the variable-length array de-
scriptor (see Sect. 7.3.5). In the special case where the variable-
length array descriptor has a size of zero, then theTDIMn key-
word is not applicable. If the number of elements in the array
implied by theTDIMn is fewer than the allocated size of the ar-
ray in theFITSfile, then the unused trailing elementsshouldbe
interpreted as containing undefined fill values.

A character string is represented in a binary table by a one-
dimensional character array, as described under ‘Character’ in
the list of data types in Sect. 7.3.3. For example, a Fortran
CHARACTER*20variable could be represented in a binary table as
a character array declared asTFORMn= ’20A’. Arrays of strings,
i.e., multi-dimensional character arrays,maybe represented us-
ing theTDIMn notation. For example, ifTFORMn = ’60A’ and
TDIMn= ’(5,4,3)’, then the entry consists of a 4× 3 array of
strings each comprising five characters.

The following four keywordsmaybe used to specify minimum
and maximum values in numerical columns of aFITSASCII or
binary table. These keywordsmusthave the same data type as
the physical values in the associated column (either an integer or
a floating-point number). Any undefined elements in the column
or any other IEEE special values in the case of floating-point
columnsshall be excluded when determining the value of these
keywords.

TDMINn keywords. The value fieldshall contain a number giv-
ing the minimum physical value contained in Columnn of the
table. This keyword is analogous to theDATAMIN keyword that
is defined for arrays in Sect. 4.4.2.5.

TDMAXn keywords. The value fieldshall contain a number giv-
ing the maximum physical value contained in Columnn of the
table. This keyword is analogous to theDATAMAX keyword that
is defined for arrays in Sect. 4.4.2.5.

24

Table 20: ValidTDISPn format values inBINTABLE extensions.

Field Value Data type

Aw Character
Lw Logical

Iw.m Integer
Bw.m Binary, integers only
Ow.m Octal, integers only
Zw.m Hexadecimal, integers only
Fw.d Floating-point, fixed decimal notation

Ew.dEe Floating-point, exponential notation
ENw.d Engineering; E format with exponent multiple of three
ESw.d Scientific; same as EN but non-zero leading digit if not zero

Gw.dEe General; appears as F if significance not lost, else E.
Dw.dEe Floating-point, exponential notation

Notes. w is the width in characters of displayed values,m is the minimum number of digits displayed,d is the number of digits to right of decimal,
ande is number of digits in exponent. The.m andEe fields areoptional.

TLMINn keywords. The value fieldshall contain a number that
specifies the minimum physical value in Columnn that has
a valid meaning or interpretation. The column is notrequired
to actually contain any elements that have this value, and the
column may contain elements with physical values less than
TLMINn, however, the interpretation of any such out-of-range
column elements is not defined.

TLMAXn keywords. The value fieldshall contain a number that
specifies the maximum physical value in Columnn that has a
valid meaning or interpretation. The column is notrequired to
actually contain any elements that have this value, and the col-
umn may contain elements with physical values greater than
TLMAXn, however, the interpretation of any such out-of-range
column elements is not defined.

TheTLMINn andTLMAXn keywords are commonly used when
constructing histograms of the data values in a column. For ex-
ample, if a table contains columns that give theX andY pixel
location of a list of photons that were detected by a photon-
counting device, then theTLMINn andTLMAXn keywords could
be used respectively to specify the minimum and maximum val-
ues that the detector is capable of assigning to theX and Y
columns.

7.3.3. Data sequence

The data in a binary-table extensionshallconsist of a main data
table, whichmay, but need not, be followed by additional bytes
in the supplemental data area. The positions in the last datablock
after the last additional byte, or, if there are no additional bytes,
the last character of the last row of the main data table,shall be
filled by setting all bits to zero.

7.3.3.1. Main data table

The table is constructed from a two-dimensional byte ar-
ray. The number of bytes in a rowshall be specified by the
value of theNAXIS1 keyword and the number of rowsshall
be specified by theNAXIS2 keyword of the associated header.
Within a row, fieldsshallbe stored in order of increasing column

number, as determined from then of theTFORMn keywords. The
number of bytes in a row and the number of rows in the table
shalldetermine the size of the byte array. Every row in the array
shallhave the same number of bytes. The first rowshallbegin at
the start of the data block immediately following the last header
block. Subsequent rowsshall begin immediately following the
end of the previous row, with no intervening bytes, independent
of the FITS block structure. Words need not be aligned along
word boundaries.

Each row in the arrayshall consist of a sequence of from 0
to 999 fields as specified by theTFIELDS keyword. The number
of elements in each field and their data typeshall be specified
by theTFORMn keyword in the associated header. A separate for-
mat keywordmustbe provided for each field. The location and
format of fieldsshall be the same for every row. Fieldsmaybe
empty, if the repeat count specified in the value of theTFORMn
keyword of the header is0. Writers of binary tablesshouldselect
a format appropriate to the form, range of values, and accuracy
of the data in the table. The following data types, and no others,
are permitted.

Logical. If the value of theTFORMn keyword specifies Data
Type’L’, the contents of Fieldn shallconsist of ASCIIT indi-
cating true or ASCIIF, indicating false. A 0 byte (hexadecimal
00) indicates a NULL value.

Bit array. If the value of theTFORMnkeyword specifies data type
’X’, the contents of Fieldn shall consist of a sequence of bits
starting with the most-significant bit; the bits followingshall be
in order of decreasing significance, ending with the least signifi-
cant bit. A bit arrayshall be composed of an integral number of
bytes, with those bits following the end of the data set to zero.
No null value is defined for bit arrays.

Character. If the value of theTFORMn keyword specifies Data
Type ’A’, Field n shall contain a character string of zero-or-
more members, composed of the restricted set of ASCII-text
characters. This character stringmaybe terminated before the
length specified by the repeat count by an ASCII NULL (hex-
adecimal code 00). Characters after the first ASCII NULL are
not defined. A string with the number of characters specified by

25

the repeat count is not NULL terminated. Null strings are defined
by the presence of an ASCII NULL as the first character.

Unsigned 8-Bit integer. If the value of theTFORMn keyword
specifies Data Type’B’, the data in Fieldn shallconsist of un-
signed eight-bit integers, with the most-significant bit first, and
subsequent bits in order of decreasing significance. Null values
are given by the value of the associatedTNULLnkeyword. Signed
integers can be represented using the convention describedin
Sect. 5.2.5.

16-Bit integer. If the value of theTFORMn keyword specifies
Data Type’I’, the data in Fieldn shallconsist of two’s comple-
ment signed 16-bit integers, contained in two bytes. The most-
significant byteshall be first (big-endian byte order). Within
each byte the most-significant bitshall be first, and subsequent
bits shall be in order of decreasing significance. Null values are
given by the value of the associatedTNULLn keyword. Unsigned
integers can be represented using the convention describedin
Sect. 5.2.5.

32-Bit integer. If the value of theTFORMn keyword specifies
Data Type’J’, the data in Fieldn shallconsist of two’s comple-
ment signed 32-bit integers, contained in four bytes. The most-
significant byteshall be first, and subsequent bytesshall be in
order of decreasing significance (big-endian byte order). Within
each byte, the most-significant bitshall be first, and subsequent
bits shall be in order of decreasing significance. Null values are
given by the value of the associatedTNULLn keyword. Unsigned
integers can be represented using the convention describedin
Sect. 5.2.5.

64-Bit integer. If the value of theTFORMn keyword specifies
Data Type’K’, the data in Fieldn shall consist of two’s com-
plement signed 64-bit integers, contained in eight bytes. The
most-significant byteshall be first, and subsequent bytesshall
be in order of decreasing significance. Within each byte, the
most-significant bitshall be first, and subsequent bitsshall be
in order of decreasing significance (big-endian byte order). Null
values are given by the value of the associatedTNULLn keyword.
Unsigned integers can be represented using the convention de-
scribed in Sect. 5.2.5.

Single-precision floating point. If the value of theTFORMn key-
word specifies Data Type’E’, the data in Fieldn shall consist
of ANSI/IEEE-754 (IEEE 1985) 32-bit floating-point numbers,
in big-endian byte order, as described in Appendix E. All IEEE
special values are recognized. The IEEE NaN is used to repre-
sent null values.

Double-precision floating point. If the value of theTFORMn
keyword specifies Data Type’D’, the data in Fieldn shallcon-
sist of ANSI/IEEE-754 (IEEE 1985) 64-bit double-precision
floating-point numbers, in big-endian byte order, as described in
Appendix E. All IEEE special values are recognized. The IEEE
NaN is used to represent null values.

Single precision complex. If the value of theTFORMn keyword
specifies Data Type’C’, the data in Fieldn shall consist of a
sequence of pairs of 32-bit single-precision floating-point num-
bers. The first member of each pairshall represent the real part
of a complex number, and the second membershall represent
the imaginary part of that complex number. If either member
contains an IEEE NaN, the entire complex value is null.

Double-precision complex. If the value of theTFORMnkeyword
specifies Data Type’M’, the data in Fieldn shall consist of a
sequence of pairs of 64-bit double-precision floating-point num-
bers. The first member of each pairshall represent the real part
of a complex number, and the second member of the pairshall
represent the imaginary part of that complex number. If either
member contains an IEEE NaN, the entire complex value is null.

Array descriptor. The repeat count on theP and Q array-
descriptor fieldsmusteither have a value of0 (denoting an empty
field of zero bytes) or1. If the value of theTFORMn keyword
specifies Data Type’1P’, the data in Fieldn shallconsist of one
pair of 32-bit integers. If the value of theTFORMn keyword spec-
ifies Data Type’1Q’, the data in Fieldn shallconsist of one pair
of 64-bit integers. The meaning of these integers is defined in
Sect. 7.3.5.

7.3.3.2. Bytes following main table

The main data tablemay be followed by a supplemental
data area called the heap. The size of the supplemental data
area, in bytes, is specified by the value of thePCOUNT keyword.
The use of this data area is described in Sect. 7.3.5.

7.3.4. Data display

The indexedTDISPn keywordmaybe used to describe the rec-
ommended format for displaying an ASCII-text representation
of the contents of Fieldn. The permitted display format codes
for each type of data (i.e., character strings, logical, integer, or
real) are given in Table 20 and described below.

Character data. If the table column contains a character string
(with TFORMn = ’rA’) then theTDISPn format codemustbe
Aw, wherew is the number of characters to display. If the char-
acter datum has length less than or equal tow, it is represented
on output right-justified in a string ofw characters. If the char-
acter datum has length greater thanw, the firstw characters of
the datum are represented on output in a string ofw characters.
Character data are not surrounded by single- or double-quotation
marks unless those marks are themselves part of the data value.

Logical data. If the table column contains logical data (with
TFORMn= ’rL’) then theTDISPn format codemustbeLw, where
w is the width in characters of the display field. Logical data are
represented on output with the characterT for true orF for false
right-justified in a space-filled string ofw characters. A null value
maybe represented by a string ofw space characters.

26

Integer data. If the table column contains integer data (with
TFORMn = ’rX’, ’rB’, ’rI’, ’rJ’, or ’rK’) then theTDISPn
format codemayhave any of these forms:Iw.m, Bw.m, Ow.m, or
Zw.m. The default value ofm is one and the’.m’ is optional. The
first letter of the code specifies the number base for the encoding
with I for decimal (10),B for binary (2),O for octal (8), andZ
for hexadecimal (16). Hexadecimal format uses the upper-case
letters A through F to represent decimal values 10 through 15.
The output field consists ofw characters containing zero-or-more
leading spaces followed by a minus sign if the internal datumis
negative (only in the case of decimal encoding with theI for-
mat code), followed by the magnitude of the internal datum in
the form of an unsigned-integer constant in the specified number
base, with only as many leading zeros as are needed to have at
leastm numeric digits. Note thatm ≤ w is allowed if all values
are positive, butm < w is required if any values are negative. If
the number of digits required to represent the integer datumex-
ceedsw, then the output field consists of a string ofw asterisk (*)
characters.

Real data. If the table column contains real data (with
TFORMn = ’rE’, or ’rD’) or contains integer data (with any
of the TFORMn format codes listed in the previous paragraph),
which arerecommendedto be displayed as real values (i.e., es-
pecially in cases where the integer values represent scaledphys-
ical values using Eq. 7), then theTDISPn format codemayhave
any of these forms:Fw.d, Ew.dEe, Dw.dEe, ENw.d, or ESw.d.
In all cases, the output is a string ofw characters including the
decimal point, any sign characters, and any exponent including
the exponent’s indicators, signs, and values. If the numberof
digits required to represent the real datum exceedsw, then the
output field consists of a string ofw asterisk (*) characters. In all
cases,d specifies the number of digits to appear to the right of
the decimal point.

TheF format code output field consists ofw − d − 1 charac-
ters containing zero-or-more leading spaces, followed by ami-
nus sign if the internal datum is negative, followed by the abso-
lute magnitude of the internal datum in the form of an unsigned-
integer constant. These characters are followed by a decimal
point (’.’) and d characters giving the fractional part of the
internal datum, rounded by the normal rules of arithmetic tod

fractional digits.

For theE andD format codes, an exponent is taken such that
the fraction 0.1 ≤ |datum|/10exponent< 1.0. The fraction (with
appropriate sign) is output with anF format of widthw − e − 2
characters withd characters after the decimal followed by anE
or D followed by the exponent as a signede+1 character integer
with leading zeros as needed. The default value ofe is 2 when
the Ee portion of the format code is omitted. If the exponent
value will not fit ine+1 characters but will fit ine+2 then theE
(or D) is omitted and the wider field used. If the exponent value
will not fit (with a sign character) ine + 2 characters, then the
entirew-character output field is filled with asterisks (*).

TheES format code is processed in the same manner as the
E format code except that the exponent is taken so that 1.0 ≤
fraction< 10.

TheEN format code is processed in the same manner as the
E format code except that the exponent is taken to be an integer
multiple of three and so that 1.0 ≤ fraction < 1000.0. All real
format codes have number base 10. There is no difference be-

tweenE andD format codes on input other than an implication
with the latter of greater precision in the internal datum.

TheGw.dEe format codemaybe used with data of any type.
For data of type integer, logical, or character, it is equivalent to
Iw, Lw, or Aw, respectively. For data of type real, it is equivalent
to anF format (with different numbers of characters after the
decimal) when that format will accurately represent the value
and is equivalent to anE format when the number (in absolute
value) is either very small or very large. Specifically, for real
values outside the range 0.1 − 0.5×10−d−1 ≤ value< 10d −
0.5, it is equivalent toEw.dEe. For real values within the above
range, it is equivalent toFw′.d′ followed by 2+ e spaces, where
w′ = w − e − 2 andd′ = d − k for k = 0, 1, . . . , d if the real
datum value lies in the range 10k−1

(

1 − 0.5×10−d
)

≤ value≤

10k
(

1 − 0.5×10−d
)

.

Complex data. If the table column contains complex data (with
TFORMn = ’rC’, or ’rM’) then theymaybe displayed with any
of the real data formats as described above. The same format is
used for the real and imaginary parts. It isrecommendedthat the
two values be separated by a comma and enclosed in parentheses
with a total field width of 2w + 3.

7.3.5. Variable-length arrays

One of the most attractive features of binary tables is that any
field of the table can be an array. In the standard case this is
a fixed-size array, i.e., a fixed amount of storage is allocated in
each row for the array data—whether it is used or not. This is fine
so long as the arrays are small or a fixed amount of array data
will be stored in each field, but if the stored array length varies
for different rows, it is necessary to impose a fixed upper limit on
the size of the array that can be stored. If this upper limit ismade
too large excessive wasted space can result and the binary-table
mechanism becomes seriously inefficient. If the limit is set too
low then storing certain types of data in the table could become
impossible.

The variable-length array construct presented here was de-
vised to deal with this problem. Variable-length arrays areim-
plemented in such a way that, even if a table contains such ar-
rays, a simple reader program that does not understand variable-
length arrays will still be able to read the main data table (in
other words a table containing variable-length arrays conforms
to the basic binary-table standard). The implementation chosen
is such that the rows in the main data table remain fixed in size
even if the table contains a variable-length array field, allowing
efficient random access to the main data table.

Variable-length arrays are logically equivalent to regular
static arrays, the only differences being 1) the length of the stored
array can differ for different rows, and 2) the array data are not
stored directly in the main data table. Since a field of any data
type can be a static array, a field of any data type can also be
a variable-length array (excluding the TypeP and Q variable-
length array descriptors themselves, which are not a data type so
much as a storage-class specifier). Other establishedFITS con-
ventions that apply to static arrays will generally apply aswell
to variable-length arrays.

A variable-length array is declared in the table header with
one of the following two special field data-type specifiers

rPt(emax)

27

rQ t(emax)

where the’P’ or ’Q’ indicates the presence of an array descrip-
tor (described below), the element countr should be 0, 1, or
absent,t is a character denoting the data type of the array data
(L, X, B, I, J, K, etc., but notP or Q), andemax is a quantity guar-
anteed to be equal to or greater than the maximum number of
elements of typet actually stored in any row of the table. There
is no built-in upper limit on the size of a stored array (otherthan
the fundamental limit imposed by the range of the array descrip-
tor, defined below);emax merely reflects the size of the largest
array actually stored in the table, and is provided to avoid the
need to preview the table when, for example, reading a table
containing variable-length elements into a database that supports
only fixed-size arrays. Theremaybe additional characters in the
TFORMn keyword following theemax.

For example,

TFORM8 = ’PB(1800)’ / Variable byte array

indicates that Field 8 of the table is a variable-length array of
type byte, with a maximum stored array length not to exceed
1800 array elements (bytes in this case).

The data for the variable-length arrays in a table are not
stored in the main data table; they are stored in a supplemental
data area, the heap, following the main data table. What is stored
in the main data table field is anarray descriptor. This consists
of two 32-bit signed integer values in the case of’P’ array de-
scriptors, or two 64-bit signed integer values in the case of’Q’

array descriptors: the number of elements (array length) ofthe
stored array, followed by the zero-indexed byte offset of the first
element of the array, measured from the start of the heap area.
The meaning of a negative value for either of these integers is
not defined by this Standard. Storage for the array is contiguous.
The array descriptor for FieldN as it would appear embedded in
a table row is illustrated symbolically below.

. . . [Field N–1] [(nelem,offset)] [FieldN+1] . . .

If the stored array length is zero, there is no array data, and
the offset value is undefined (itshouldbe set to zero). The stor-
age referenced by an array descriptormustlie entirely within the
heap area; negative offsets are not permitted.

A binary table containing variable-length arrays consistsof
three principal segments, as follows.

[table header] [main data table] (optional gap) [heap area]

The table header consists of one or more 2880-byte header
blocks with the last block indicated by the keywordEND some-
where in the block. The main data table begins with the first data
block following the last header block and isNAXIS1 × NAXIS2
bytes in length. The zero-indexed byte offset to the start of
the heap, measured from the start of the main data table,may
be given by theTHEAP keyword in the header. If this key-
word is missing then the heap begins with the byte immediately
following main data table (i.e., the default value ofTHEAP is
NAXIS1 × NAXIS2). This default value is the minimum allowed
value for theTHEAP keyword, because any smaller value would
imply that the heap and the main data table overlap. If theTHEAP

keyword has a value larger than this default value, then there is
a gap between the end of the main data table and the start of
the heap. The total length in bytes of the supplemental data area

following the main data table (gap plus heap) is given by the
PCOUNT keyword in the table header.

For example, suppose a table contains five rows that are each
168 bytes long, with a heap area 3000 bytes long, beginning at
an offset of 2880, thereby aligning the main data table and heap
areas on data block boundaries (this alignment is not necessarily
recommended but is useful for this example). The data portion of
the table consists of three 2880-byte data blocks: the first block
contains the 840 bytes from the five rows of the main data table
followed by 2040 fill bytes; the heap completely fills the second
block; the third block contains the remaining 120 bytes of the
heap followed by 2760 fill bytes.PCOUNT gives the total number
of bytes from the end of the main data table to the end of the
heap, and in this example has a value of 2040+ 2880+ 120 =
5040. This is expressed in the table header as shown below.

NAXIS1 = 168 / Width of table row in bytes

NAXIS2 = 5 / Number of rows in table

PCOUNT = 5040 / Random parameter count

...

THEAP = 2880 / Byte offset of heap area

The values ofTSCALn andTZEROn for variable-length array
column entries are to be applied to the values in the data array in
the heap area, not the values of the array descriptor. These key-
words can be used to scale data values in either static or variable-
length arrays.

7.3.6. Variable-length-array guidelines

While the above description is sufficient to define the required
features of the variable-length array implementation, some hints
regarding usage of the variable-length array facility might also
be useful.

Programs that read binary tables should take care to not as-
sume more about the physical layout of the table than isrequired
by the specification. For example, there are no requirementson
the alignment of data within the heap. If efficient runtime ac-
cess is a concern one might want to design the table so that data
arrays are aligned to the size of an array element. In another
case one might want to minimize storage and forgo any efforts
at alignment (by careful design it is often possible to achieve
both goals). Variable-length array datamaybe stored in the heap
in any order, i.e., the data for rowN+1 are not necessarily stored
at a larger offset than that for rowN. Theremaybe gaps in the
heap where no data are stored. Pointer aliasing is permitted, i.e.,
the array descriptors for two or more arraysmay point to the
same storage location (this could be used to save storage if two
or more arrays are identical).

Byte arrays are a special case because they can be used
to store a ‘typeless’ data sequence. SinceFITS is a machine-
independent storage format, some form of machine-specific data
conversion (byte swapping, floating-point format conversion) is
implied when accessing stored data with types such as integer
and floating, but byte arrays are copied to and from external stor-
age without any form of conversion.

An important feature of variable-length arrays is that it is
possible that the stored array lengthmay be zero. This makes
it possible to have a column of the table for which, typically,
no data are present in each stored row. When data are present,
the stored array can be as large as necessary. This can be useful
when storing complex objects as rows in a table.

28

Accessing a binary table stored on a random-access storage
medium is straightforward. Since the rows of data in the main
data table are fixed in size they can be randomly accessed given
the row number, by computing the offset. Once the row has been
read in, any variable-length array data can be directly accessed
using the element count and offset given by the array descriptor
stored in that row.

Reading a binary table stored on a sequential-access storage
medium requires that a table of array descriptors be built upas
the main data table rows are read in. Once all the table rows
have been read, the array descriptors are sorted by the offset of
the array data in the heap. As the heap data are read, arrays are
extracted sequentially from the heap and stored in the affected
rows using the back pointers to the row and field from the table
of array descriptors. Since array aliasing is permitted, itmight
be necessary to store a given array in more than one field or row.

Variable-length arrays are more complicated than regular
static arrays and might not be supported by some software sys-
tems. The producers ofFITS data products should consider the
capabilities of the likely recipients of their files when deciding
whether or not to use this format, and as a general rule should
use it only in cases where it provides significant advantagesover
the simpler fixed-length array format. In particular, the use of
variable-length arrays might present difficulties for applications
that ingest theFITS file via a sequential input stream, because
the application cannot fully process any rows in the table until
after the entire fixed-length table, and potentially the entire heap
has been transmitted as outlined in the previous paragraph.

8. World-coordinate systems

Representations of the mapping between image coordinates and
physical (i.e., world) coordinate systems (WCSs)maybe repre-
sented withinFITSHDUs. The keywords that are used to express
these mappings are now rigorously defined in a series of pa-
pers on world-coordinate systems (Greisen & Calabretta 2002),
celestial-coordinate systems (Calabretta & Greisen 2002),
spectral-coordinate systems (Greisen et al. 2006), and time-
coordinate systems (Rots et al. 2015). An additional spher-
ical projection, called HEALPix, is defined in reference
(Calabretta & Roukema 2007). These WCS papers have been
formally approved by the IAUFWG and therefore areincor-
porated by referenceas an official part of this Standard. The
reader should refer to these papers for additional details and
background information that cannot be included here. Various
updates and corrections to the primary WCS papers have been
compiled by the authors, and are reflected in this section.
Therefore, where conflicts exist, the description in this Standard
will prevail.

8.1. Basic concepts

Rather than store world coordinates separately for each datum,
the regular lattice structure of aFITS image offers the possibil-
ity of defining rules for computing world coordinates at each
point. As stated in Sect. 3.3.2 and depicted in Fig. 1, image ar-
ray data are addressed viaintegral array indicesthat range in
value from 1 toNAXISj on Axis j. Recognizing that image data
values may have an extent, for example an angular separation,
spectral channel width or time span, and thus that it may make
sense to interpolate between them, these integral array indices

Pixel

Coordinates

Linear transformation:

translation, rotation,

skew, scale

Rescale to

physical units

Intermediate Pixel

Coordinates

Intermediate World

Coordinates

Coordinate

projection, offset

World

Coordinates

CRPIXj,

PCi_j or

CDi_j

CDELTi

CTYPEi,

CRVALi

PVi_m

Fig. 2: A schematic view of converting pixel coordinates to
world coordinates.

maybe generalized to floating-pointpixel coordinates. Integral
pixel-coordinate values coincide with the corresponding array
indices, while fractional pixel-coordinate values lie between ar-
ray indices and thus imply interpolation. Pixel-coordinate val-
ues are defined at all points within the image lattice and outside
it (except alongconventionalaxes, see Sect. 8.5). They form
the basis of the world-coordinate formalism inFITS depicted
schematically in Fig. 2.

The essence of representing world-coordinate systems in
FITS is the association of various reserved keywords with el-
ements of a transformation (or a series of transformations), or
with parameters of a projection function. The conversion from
pixel coordinates in the data array to world coordinates is sim-
ply a matter of applying the specified transformations (in order)
via the appropriate keyword values; conversely, defining a WCS
for an image amounts to solving for the elements of the trans-
formation matrix(es) or coefficients of the function(s) of interest
and recording them in the form of WCS keyword values. The
description of the WCS systems and their expression inFITS
HDUs is quite extensive and detailed, but is aided by a careful
choice of notation. Key elements of the notation are summarized
in Table 21, and are used throughout this section. The formal
definitions of the keywords appear in the following subsections.

The conversion of image pixel coordinates to world coordi-
nates is a multi-step process, as illustrated in Fig. 2.

For all coordinate types, the first step is a linear transfor-
mation applied via matrix multiplication of the vector of pixel-
coordinate elements,p j :

qi =

N
∑

j=1

mi j (p j − r j) (9)

wherer j are the pixel-coordinate elements of the reference point,
j indexes the pixel axis, andi the world axis. Themi j matrix

29

Table 21: WCS and celestial coordinates notation.

Variable(s) Meaning RelatedFITSkeywords

i Index variable for world coordinates
j Index variable for pixel coordinates
a Alternative WCS version code
pj Pixel coordinates
r j Reference pixel coordinates CRPIXja
mi j Linear-transformation matrix CDi ja or PCi ja
si Coordinate scales CDELTia
(x, y) Projection plane coordinates
(φ, θ) Native longitude and latitude
(α, δ) Celestial longitude and latitude
(φ0, θ0) Native longitude and latitude of the fiducial point PVi 1a† , PVi 2a†

(α0, δ0) Celestial longitude and latitude of the fiducial pointCRVALia
(αp, δp) Celestial longitude and latitude of the native pole
(φp, θp) Native longitude and latitude of the celestial pole LONPOLEa (=PVi 3a†),

LATPOLEa (=PVi 4a†)

Notes. † Associated withLongitudeAxis i.

is a non-singular, square matrix of dimensionN × N, whereN
is the number of world-coordinate axes. The elementsqi of the
resultingintermediate pixel coordinatevector are offsets, in di-
mensionless pixel units, from the reference point along axes co-
incident with those of theintermediate world coordinates. Thus,
the conversion ofqi to the corresponding Intermediate-world-
coordinate Elementxi is a simple scale:

xi = siqi . (10)

There are three conventions for associatingFITS keywords
with the above transformations. In the first formalism, the matrix
elementsmi j are encoded in thePCi j keywords and the scale
factorssi are encoded in theCDELTi keywords, whichmusthave
non-zero values. In the second formalism Eqs. (9) and (10) are
combined as

xi =

N
∑

j=1

(simi j)(p j − r j) (11)

and theCDi j keywords encode the productsimi j . The third con-
vention was widely used before the development of the two pre-
viously described conventions and uses theCDELTi keywords
to define the image scale and theCROTA2 keyword to specify
a bulk rotation of the image plane. Use of theCROTA2 keyword
is now deprecated, and instead the newerPCi j orCDi j keywords
arerecommendedbecause they allow for skewed axes and fully
general rotation of multi-dimensional arrays. TheCDELTi and
CROTA2 keywordsmay co-exist with theCDi j keywords (but
the CROTA2 must notoccur with thePCi j keywords) as an aid
to old FITS interpreters, but these keywordsmustbe ignored
by software that supports theCDi j keyword convention. In all
these formalisms the reference pixel coordinatesr j are encoded
in theCRPIXi keywords, and the world coordinates at the refer-
ence point are encoded in theCRVALi keywords. For additional
details, see Greisen & Calabretta (2002).

The third step of the process, computing the final world co-
ordinates, depends on the type of coordinate system, which is
indicated with the value of theCTYPEi keyword. For some sim-
ple, linear cases an appropriate choice of normalization for the
scale factors allows the world coordinates to be taken directly (or
by applying a constant offset) from thexi (e.g., some spectra).

In other cases it is more complicated, and may require the ap-
plication of some non-linear algorithm (e.g., a projection, as for
celestial coordinates), which may require the specification of ad-
ditional parameters. Where necessary, numeric parameter values
for non-linear algorithmsmustbe specified viaPVi m keywords
and character-valued parameters will be specified viaPSi mkey-
words, wherem is the parameter number.

The application of these formalisms to coordinate systems of
interest is discussed in the following sub-sections: Sect.8.2 de-
scribes general WCS representations (see Greisen & Calabretta
2002), Sect. 8.3 describes celestial-coordinate systems (see
Calabretta & Greisen 2002)), Sect. 8.4 describes spectral-
coordinate systems (see Greisen et al. 2006), and Sect. 9 de-
scribes the representation of time coordinates (see Rots etal.
2015).

8.2. World-coordinate-system representations

A variety of keywords have been reserved for computing the
coordinate values that are to be associated with any pixel lo-
cation within an array. The full set is given in Table 22; those in
most common usage are defined in detail below for convenience.
Coordinate-system specificationsmayappear in HDUs that con-
tain simple images in the primary array or in anIMAGE extension.
Imagesmayalso be stored in a multi-dimensional vector cell of
a binary table, or as a tabulated list of pixel locations (andop-
tionally, the pixel value) in a table. In these last two typesof im-
age representations, the WCS keywords have a different naming
convention, which reflects the needs of the tabular data structure
and the eight-character limit for keyword lengths, but otherwise
follow exactly the same rules for type, usage, and default values.
See reference Calabretta & Greisen (2002) for example usageof
these keywords. All forms of these reserved keywordsmustbe
used only as specified in this Standard.

In the case of the binary-table vector representation, it is
possible that the images contained in a given column of the
table have different coordinate transformation values. Table 9
of Calabretta & Greisen (2002) illustrates a technique (com-

30

monly known as the “Green Bank Convention10”), which uti-
lizes additional columns in the table to record the coordinate-
transformation values that apply to the corresponding image
in each row of the table. More information is provided in
Appendix L.

The keywords given below constitute a complete set of fun-
damental attributes for a WCS description. Although their inclu-
sion in an HDU is optional,FITSwritersshouldinclude a com-
plete set of keywords when describing a WCS. In the event that
some keywords are missing, default valuesmustbe assumed, as
specified below.

WCSAXES – [integer; default:NAXIS, or larger of WCS indicesi
or j]. Number of axes in the WCS description. This keyword,
if present,mustprecede all WCS keywords exceptNAXIS in
the HDU. The value ofWCSAXES mayexceed the number of
pixel axes for the HDU.

CTYPEi – [string; indexed; default:' ' (i.e. a linear, undefined
axis)]. Type for the Intermediate-coordinate Axisi. Any co-
ordinate type that is not covered by this Standard or an offi-
cially recognizedFITSconventionshallbe taken to be linear.
All non-linear coordinate system namesmustbe expressed
in ‘4–3’ form: the first four characters specify the coordinate
type, the fifth character is a hyphen (‘-’), and the remain-
ing three characters specify an algorithm code for computing
the world coordinate value. Coordinate types with names of
fewer than four characters are padded on the right with hy-
phens, and algorithm codes with fewer than three charac-
ters are padded on the right with blanks11. Algorithm codes
shouldbe three characters.

CUNITi – [string; indexed; default:' ' (i.e., undefined)].
Physical units ofCRVAL andCDELT for Axis i. Note that units
shouldalways be specified (see Sect. 4.3). Units for celestial
coordinate systems defined in this Standardmustbe degrees.

CRPIXj – [floating point; indexed; default:0.0]. Location of
the reference point in the image for Axisj corresponding to
r j in Eq. (9). Note that the reference pointmaylie outside the
image and that the first pixel in the image has pixel coordi-
nates (1.0, 1.0, . . .).

CRVALi – [floating point; indexed; default:0.0]. World-
coordinate value at the reference point of Axisi.

CDELTi – [floating point; indexed; default:1.0]. Increment of
the world coordinate at the reference point for Axisi. The
valuemust notbe zero.

CROTAi – [floating point; indexed; default:0.0]. The amount
of rotation from the standard coordinate system to a different
coordinate system. Further use of this of this keyword is dep-
recated, in favor of the newer formalisms that use theCDi j
or PCi j keywords to define the rotation.

PCi j – [floating point; defaults:1.0 when i = j, 0.0 oth-
erwise]. Linear transformation matrix between Pixel Axes
j and Intermediate-coordinate Axesi. The PCi j matrix
must notbe singular.

CDi j – [floating point; defaults:0.0, but see below]. Linear
transformation matrix (with scale) between Pixel Axesj
and Intermediate-coordinate Axesi. This nomenclature is

10 Named after a meeting held in Green Bank, West Virginia, USA
in 1989 to develop standards for the interchange of single-dish radio-
astronomy data.

11 Example:’RA---UV ’.

equivalent toPCi j whenCDELTi is unity. TheCDi j matrix
must notbe singular. Note that theCDi j formalism is an ex-
clusive alternative toPCi j, and theCDi j andPCi j keywords
must notappear together within an HDU.

In addition to the restrictions noted above, if anyCDi j keywords
are present in the HDU, all other unspecifiedCDi j keywords
shall default to zero. If noCDi j keywords are present then the
headershallbe interpreted as being inPCi j form whether or not
anyPCi j keywords are actually present in the HDU.

Some non-linear algorithms that describe the transformation
between pixel and intermediate-coordinate axes require param-
eter values. A few non-linear algorithms also require character-
valued parameters, e.g., table lookups require the names ofthe
table extension and the columns to be used. Where necessary
parameter valuesmustbe specified via the following keywords.

PVi m – [floating point]. Numeric parameter values for
Intermediate-world-coordinate Axisi, wherem is the param-
eter number. Leading zerosmust notbe used, andm may
have only values in the range 0 through 99, and that are de-
fined for the particular non-linear algorithm.

PSi m– [string]. Character-valued parameters for Intermediate-
world-coordinate Axisi, wherem is the parameter number.
Leading zerosmust notbe used, andm mayhave only val-
ues in the range 0 through 99, and that are defined for the
particular non-linear algorithm.

The following keywords, while not essential for a complete
specification of an image WCS, can be extremely useful for read-
ers to interpret the accuracy of the WCS representation of the
image.

CRDERi – [floating point; default:0.0]. Random error in
Coordinatei, whichmustbe non-negative.

CSYERi – [floating point; default:0.0]. Systematic error in
Coordinatei, whichmustbe non-negative.

These valuesshouldgive a representative average value of the
error over the range of the coordinate in the HDU. The total error
in the coordinates would be given by summing the individual
errors in quadrature.

8.2.1. Alternative WCS axis descriptions

In some cases it is useful to describe an image with more than
one coordinate type12. Alternative WCS descriptionsmay be
added to the header by adding the appropriate sets of WCS key-
words, and appending to all keywords in each set an alphabetic
code in the rangeA throughZ. Keywords that may be used in
this way to specify a coordinate system version are indicated in
Table 22 with the suffix a. All implied keywords with this encod-
ing arereserved keywords, andmust onlybe used inFITSHDUs
as specified in this Standard. The axis numbersmustlie in the
range 1 through 99, and the coordinate parameterm mustlie in
the range 0 through 99, both with no leading zeros.

Theprimaryversion of the WCS description is that specified
with a as the blank character13. Alternative axis descriptions are

12 Examples include the frequency, velocity, and wavelength along a
spectral axis (only one of which, of course, could be linear), or the po-
sition along an imaging detector in both meters and degrees on the sky.

13 There are a number of keywords (e.g.ijPCna) where thea could be
pushed off the eight-character keyword name for plausible values ofi,

31

Table 22: Reserved WCS keywords (continues on next page)

BINTABLE vector Pixel list
Keyword Description Global Image Primary Alternative Primary Alternative

Coordinate dimensionality WCSAXESa WCAXna . . .
Axis type CTYPEia iCTYPn iCTYna TCTYPn TCTYna
Axis units CUNITia iCUNIn iCUNna TCUNIn TCUNna
Reference value CRVALia iCRVLn iCRVna TCRVLn TCRVna
Coordinate increment CDELTia iCDLTn iCDEna TCDLTn TCDEna
Reference point CRPIXja jCRPXn jCRPna TCRPXn TCRPna
Coordinate rotation1 CROTAi iCROTn TCROTn
Transformation matrix2 PCi ja ijPCna TPCn kaor TPn ka
Transformation matrix2 CDi ja ijCDna TCDn kaor TCn ka
Coordinate parameter PVi ma iPVn maor iVn ma TPVn maor TVn ma
Coordinate parameter array . . . iVn Xa ...
Coordinate parameter PSi ma iPSn maor iSn ma TPSn maor TSn ma
Coordinate name WCSNAMEa WCSNna WCSnaor TWCSna
Coordinate axis name CNAMEia iCNAna TCNAna
Random error CRDERia iCRDna TCRDna
Systematic error CSYERia iCSYna TCSYna
WCS cross-reference target . . . WCSTna ...
WCS cross reference . . . WCSXna ...
Coordinate rotation LONPOLEa LONPna LONPna
Coordinate rotation LATPOLEa LATPna LATPna
Coordinate epoch EQUINOXa EQUIna EQUIna
Coordinate epoch3 EPOCH EPOCH EPOCH

Reference frame RADECSYS4 RADESYSa RADEna RADEna
Line rest frequency (Hz) RESTFREQ4 RESTFRQa RFRQna RFRQna
Line rest vacuum wavelength (m) RESTWAVa RWAVna RWAVna
Spectral reference frame SPECSYSa SPECna SPECna
Spectral reference frame SSYSOBSa SOBSna SOBSna
Spectral reference frame SSYSSRCa SSRCna SSRCna
Observation X (m) OBSGEO-X5 OBSGXn OBSGXn
Observation Y (m) OBSGEO-Y5 OBSGYn OBSGYn
Observation Z (m) OBSGEO-Z5 OBSGZn OBSGZn
Radial velocity (m s−1) VELOSYSa VSYSna VSYSna
Redshift of source ZSOURCEa ZSOUna ZSOUna
Angle of true velocity VELANGLa VANGna VANGna

Date-time related keywords (see Sect.9)

Date of HDU creation DATE

Date/time of observation DATE-OBS DOBSn DOBSn
MJD-OBS MJDOBn MJDOBn
BEPOCH

JEPOCH

Average date/time of observation DATE-AVG DAVGn DAVGn
MJD-AVG MJDAn MJDAn

Start date/time of observation DATE-BEG

MJD-BEG

TSTART

End date/time of observation DATE-END

MJD-END

TSTOP

Net exposure duration XPOSURE

Wall-clock exposure duration TELAPSE

Time scale TIMESYS CTYPEia iCTYPn iCTYna TCTYPn TCTYna
Time zero point (MJD) MJDREF6

Time zero point (JD) JDREF6

Time zero point (ISO) DATEREF

Reference position TREFPOS TRPOSn TRPOSn
Reference direction TREFDIR TRDIRn TRDIRn
Solar System ephemeris PLEPHEM

Time unit TIMEUNIT CUNITia iCUNIn iCUNna TCUNIn TCUNna
Time offset TIMEOFFS

Time absolute error TIMSYER CSYERia iCSYEn iCSYna TCSYn TCSYna
Time relative error TIMRDER CRDERia iCRDEn iCRDna TCRDn TCRDna
Time resolution TIMEDEL

Time location in pixel TIMEPIXR

Phase-axis zero point CZPHSia iCZPHn iCZPna TCZPHn TCZPna
Phase-axis period CPERIia iCPERn iCPRna TCPERn TCPRna

32

Table 22 (continued)

Notes.The indicesj andi are pixel and intermediate-world-coordinate axis numbers, respectively. Within a table, the indexn refers to a column
number, andmrefers to a coordinate parameter number. The indexk also refers to a column number. The indicatora is either blank (for the primary
coordinate description) or a characterA throughZ that specifies the coordinate version. See the text.
(1) CROTAi form is deprecated but still in use. Itmust notbe used withPC i j, PV i m, andPS i m. (2) PCi j andCDi j forms of the transformation matrix
are mutually exclusive, andmust notappear together in the same HDU.(3) EPOCH is deprecated. UseEQUINOX instead.(4) These eight-character
keywords are deprecated; the seven-character forms, whichcan include an alternate version code letter at the end,shouldbe used instead.(5) For
the purpose of time reference position, geodetic latitude/longitude/elevationOBSGEO-B, OBSGEO-L, OBSGEO-H or an orbital-ephemeris keyword
OBSORBIT can be also used (see Sect. 9.2.3).(6) [M]JDREF can be split in integer and fractional values[M]JDREFI and[M]JDREFF as explained
in Sect. 9.2.2.

Table 23: Reserved celestial-coordinate-algorithm codes.

Default
Code φ0 θ0 Properties1 Projection name

Zenithal (azimuthal) projections
AZP 0◦ 90◦ Sect. 5.1.1 Zenithal perspective
SZP 0◦ 90◦ Sect. 5.1.2 Slant zenithal perspective
TAN 0◦ 90◦ Sect. 5.1.3 Gnomonic
STG 0◦ 90◦ Sect. 5.1.4 Stereographic
SIN 0◦ 90◦ Sect. 5.1.5 Slant orthographic
ARC 0◦ 90◦ Sect. 5.1.6 Zenithal equidistant
ZPN 0◦ 90◦ Sect. 5.1.7 Zenithal polynomial
ZEA 0◦ 90◦ Sect. 5.1.8 Zenithal equal-area
AIR 0◦ 90◦ Sect. 5.1.9 Airy

Cylindrical projections
CYP 0◦ 0◦ Sect. 5.2.1 Cylindrical perspective
CEA 0◦ 0◦ Sect. 5.2.2 Cylindrical equal area
CAR 0◦ 0◦ Sect. 5.2.3 Plate carrée
MER 0◦ 0◦ Sect. 5.2.4 Mercator

Pseudo-cylindrical and related projections
SFL 0◦ 0◦ Sect. 5.3.1 Samson-Flamsteed
PAR 0◦ 0◦ Sect. 5.3.2 Parabolic
MOL 0◦ 0◦ Sect. 5.3.3 Mollweide
AIT 0◦ 0◦ Sect. 5.3.4 Hammer-Aitoff

Conic projections
COP 0◦ θa Sect. 5.4.1 Conic perspective
COE 0◦ θa Sect. 5.4.2 Conic equal-area
COD 0◦ θa Sect. 5.4.3 Conic equidistant
COO 0◦ θa Sect. 5.4.4 Conic orthomorphic

Polyconic and pseudoconic projections
BON 0◦ 0◦ Sect. 5.5.1 Bonne’s equal area
PCO 0◦ 0◦ Sect. 5.5.2 Polyconic

Quad-cube projections
TSC 0◦ 0◦ Sect. 5.6.1 Tangential spherical cube
CSC 0◦ 0◦ Sect. 5.6.2 COBE quadrilateralized spherical cube
QSC 0◦ 0◦ Sect. 5.6.3 Quadrilateralized spherical cube

HEALPix grid projection
HPX 0◦ 0◦ Sect. 62 HEALPix grid

(1) Refer to the indicated section in Calabretta & Greisen (2002) for a detailed description.(2) This projection is defined in Calabretta & Roukema
(2007).

optional, butmust notbe specified unless the primary WCS de-
scription is also specified. If an alternative WCS description is
specified, all coordinate keywords for that versionmustbe given
even if the values do not differ from those of the primary version.
Rules for the default values of alternative coordinate descriptions

j, k, n, andm. In such casesa is still said to be ‘blank’ although it is not
the blank character.

are the same as those for the primary description. The alterna-
tive descriptions are computed in the same fashion as the pri-
mary coordinates. The type of coordinate depends on the value
of CTYPEia, and may be linear in one of the alternative descrip-
tions and non-linear in another.

The alternative version codes are selected by theFITSwriter;
there is no requirement that the codes be used in alphabetic se-

33

quence, nor that one coordinate version differ in its parameter
values from another. An optional keywordWCSNAMEa is also de-
fined to name, and otherwise document, the various versions of
WCS descriptions.

WCSNAMEa – [string; default fora: ' ' (i.e., blank, for the pri-
mary WCS, else a characterA throughZ that specifies the
coordinate version]. Name of the world-coordinate system
represented by the WCS keywords with the suffix a. Its pri-
mary function is to provide a means by which to specify a
particular WCS if multiple versions are defined in the HDU.

8.3. Celestial-coordinate-system representations

The conversion from intermediate world coordinates (x, y) in the
plane of projection to celestial coordinates involves two steps: a
spherical projection to native longitude and latitude (φ, θ), de-
fined in terms of a convenient coordinate system (i.e.,native
spherical coordinates), followed by a spherical rotation of these
native coordinates to the required celestial coordinate system
(α, δ). The algorithm to be used to define the spherical pro-
jection mustbe encoded in theCTYPEi keyword as the three-
letter algorithm code, the allowed values for which are speci-
fied in Table 23 and defined in references Calabretta & Greisen
(2002) and Calabretta & Roukema (2007). The target celestial-
coordinate system is also encoded into the left-most portion of
theCTYPEi keyword as the coordinate type.

For the final step, the parameterLONPOLEa mustbe specified,
which is the native longitude of the celestial pole,φp. For certain
projections (such as cylindricals and conics, which are less com-
monly used in astronomy), the additional keywordLATPOLEa
mustbe used to specify the native latitude of the celestial pole.
See Calabretta & Greisen (2002) for the transformation equa-
tions and other details.

The accepted celestial-coordinate systems are: the standard
equatorial (RA-- andDEC-), and others of the formxLON and
xLAT for longitude-latitude pairs, wherex is G for Galactic,E
for ecliptic, H for helioecliptic andS for supergalactic coordi-
nates. Since the representation of planetary-, lunar-, andsolar-
coordinate systems could exceed the 26 possibilities afforded by
the single characterx, pairs of the formyzLN andyzLT maybe
used as well.

RADESYSa – [string; default:’FK4’, ’FK5’, or ’ICRS’: see
below]. Name of the reference frame of equatorial or eclip-
tic coordinates, whose valuemust be one of those speci-
fied in Table 24. The default value is’FK4’ if the value of
EQUINOXa < 1984.0, ’FK5’ if ’EQUINOX’a ≥ 1984.0, or
’ICRS’ if ’EQUINOX’a is not given.

EQUINOXa – [floating point; default: see below]. Epoch of the
mean equator and equinox in years, whose valuemustbe
non-negative. The interpretation of epoch depends upon the
value ofRADESYSa if present:Besselianif the value is’FK4’
or ’FK4-NO-E’, Julian if the value is’FK5’; andnot appli-
cableif the value is’ICRS’ or ’GAPPT’.

EPOCH – [floating point]. This keyword is deprecated and
should notbe used in newFITSfiles. It is reserved primarily
to prevent its use with other meanings. TheEQUINOX key-
word shall be used instead. The value field of this keyword
was previously defined to contain a floating-point number
giving the equinox in years for the celestial-coordinate sys-
tem in which positions are expressed.

DATE-OBS – [floating point]. This reserved keyword is defined
in Sect. 4.4.2.

MJD-OBS – [floating point; default:DATE-OBS if given, other-
wise no default]. Modified Julian Date (JD− 2,400,000.5) of
the observation, whose value corresponds (by default) to the
start of the observation, unless another interpretation is ex-
plained in the comment field. No specific time system (e.g.
UTC, TAI, etc.) is defined for this or any of the other time-
related keywords. It isrecommendedthat theTIMESYS key-
word, as defined in Sect. 9.2.1 be used to specify the time
system. See also Sect. 9.5.

LONPOLEa – [floating point; default:φ0 if δ0 ≥ θ0, φ0 + 180◦

otherwise]. Longitude in the native coordinate system of the
celestial system’s north pole. Normally,φ0 is zero unless a
non-zero value has been set forPVi 1a, which is associated
with the longitudeaxis. This default applies for all values of
θ0, includingθ0 = 90◦, although the use of non-zero values
of θ0 are discouraged in that case.

LATPOLEa – [floating point; default: 90◦, or no default if
(θ0, δ0, φp − φ0) = (0, 0,±90◦)]. Latitude in the native coor-
dinate system of the celestial system’s north pole, or equiv-
alently, the latitude in the celestial-coordinate system of the
native system’s north pole. This keywordmaybe ignored or
omitted in cases whereLONPOLEa completely specifies the
rotation to the target celestial system.

8.4. Spectral-coordinate-system representations

This section discusses the conversion of intermediate world co-
ordinates to spectral coordinates with common axes such as fre-
quency, wavelength, and apparent radial velocity (represented
here with the coordinate variablesν, λ, or v). The key point for
constructing spectral WCS inFITS is that one of these coordi-
natesmustbe sampled linearly in the dispersion axis; the others
are derived from prescribed, usually non-linear transformations.
Frequency and wavelength axesmayalso be sampled linearly in
their logarithm.

Following the convention for theCTYPEia keyword, wheni is
the spectral axis the first four charactersmustspecify a code for
the coordinate type; for non-linear algorithms the fifth character
mustbe a hyphen, and the next three charactersmustspecify a
predefined algorithm for computing the world coordinates from
the intermediate physical coordinates. The coordinate type must
be one of those specified in Table 25. When the algorithm is lin-
ear, the remainder of theCTYPEia keywordmustbe blank. When
the algorithm is non-linear, the three-letter algorithm codemust
be one of those specified in Table 26. The relationships between
the basic physical quantitiesν, λ, andv, as well as the relation-
ships between various derived quantities are given in reference
Greisen et al. (2006).

The generality of the algorithm for specifying the spectral-
coordinate system and its representation suggests that some ad-
ditional description of the coordinate may be helpful beyond
what can be encoded in the first four characters of theCTYPEia
keyword;CNAMEia is reserved for this purpose. Note that this
keyword provides a name for an axis in a particular WCS, while
the WCSNAMEa keyword names the particular WCS as a whole.
In order to convert between some form of radial velocity and
either frequency or wavelength, the keywordsRESTFRQa and
RESTWAVa, respectively, are reserved.

34

Table 24: Allowed values ofRADESYSa.

Value Definition

’ICRS’ International Celestial Reference System
’FK5’ Mean place, new (IAU 1984) system
’FK4’1 Mean place, old (Bessel-Newcomb) system
’FK4-NO-E’1 Mean place: but without eccentricity terms
’GAPPT’ Geocentric apparent place, IAU 1984 system

(1) New FITSfiles shouldavoid using these older reference systems.

CNAMEia – [string; default: default:' ' (i.e. a linear, undefined
axis)]. Spectral-coordinate description thatmust notexceed
68 characters in length.

RESTFRQa – [floating point; default: none]. Rest frequency of
the of the spectral feature of interest. The physical unitmust
be Hz.

RESTWAVa – [floating point; default: none]. Vacuum rest wave-
length of the of the spectral feature of interest. The physical
unit mustbe m.

One or the other ofRESTFRQa or RESTWAVa shouldbe given
when it is meaningful to do so.

8.4.1. Spectral-coordinate reference frames

Frequencies, wavelengths, and apparent radial velocitiesare al-
ways referred to some selected standard of rest (i.e., reference
frame). While the spectra are obtained they are, of necessity, in
the observer’s rest frame. The velocity correction from topocen-
tric (the frame in which the measurements are usually made) to
standard reference frames (whichmustbe one of those given in
Table 27) are dependent on the dot product with time-variable
velocity vectors. That is, the velocity with respect to a standard
reference frame depends upon direction, and the velocity (and
frequency and wavelength) with respect to the local standard
of rest is a function of the celestial coordinate within the im-
age. The keywordsSPECSYSa andSSYSOBSa are reserved and,
if used,mustdescribe the reference frame in use for the spectral-
axis coordinate(s) and the spectral reference frame that was held
constant during the observation, respectively. In order tocom-
pute the velocities it is necessary to have the date and time of the
observation; the keywordsDATE-AVG andMJD-AVG are reserved
for this purpose. See also Sect. 9.5.

DATE-AVG – [string; default: none]. Calendar date of the mid-
point of the observation, expressed in the same way as the
DATE-OBS keyword.

MJD-AVG – [floating point; default: none]. Modified Julian Date
(JD− 2,400,000.5) of the mid-point of the observation.

SPECSYSa – [string; default: none]. The reference frame in use
for the spectral-axis coordinate(s). Valid values are given in
Table 27.

SSYSOBSa – [string; default:’TOPOCENT’]. The spectral refer-
ence frame that is constant over the range of the non-spectral
world coordinates. Valid values are given in Table 27.

The transformation from the rest frame of the observer to a
standard reference frame requires a specification of the location
on Earth14 of the instrument used for the observation in order to

14 The specification of location for an instrument on a spacecraft in
flight requires an ephemeris; keywords that might be required in this
circumstance are not defined here.

Table 26: Non-linear spectral algorithm codes.

Code1 Regularly sampled in Expressed as

F2W Frequency Wavelength
F2V Apparent radial velocity
F2A Air wavelength
W2F Wavelength Frequency
W2V Apparent radial velocity
W2A Air wavelength
V2F Apparent radial vel. Frequency
V2W Wavelength
V2A Air wavelength
A2F Air wavelength Frequency
A2W Wavelength
A2V Apparent radial velocity

LOG Logarithm Any four-letter type code
GRI Detector Any type code from Table 25
GRA Detector Any type code from Table 25
TAB Not regular Any four-letter type code
(1) Characters 6 through 8 of the value of the keywordCTYPEia.

calculate the diurnal Doppler correction due to the Earth’srota-
tion. The location, if specified,shallbe represented as a geocen-
tric Cartesian triple with respect to a standard ellipsoidal geoid
at the time of the observation. While the position can often be
specified with an accuracy of a meter or better, for most pur-
poses positional errors of several kilometers will have negligible
impact on the computed velocity correction. For details, see ref-
erence Greisen et al. (2006).

OBSGEO-X – [floating point; default: none].X−coordinate (in
meters) of a Cartesian triplet that specifies the location, with
respect to a standard, geocentric terrestrial reference frame,
where the observation took place. The coordinatemustbe
valid at the epochMJD-AVG or DATE-AVG.

OBSGEO-Y – [floating point; default: none].Y−coordinate (in
meters) of a Cartesian triplet that specifies the location, with
respect to a standard, geocentric terrestrial reference frame,
where the observation took place. The coordinatemustbe
valid at the epochMJD-AVG or DATE-AVG.

OBSGEO-Z – [floating point; default: none].Z−coordinate (in
meters) of a Cartesian triplet that specifies the location, with
respect to a standard, geocentric terrestrial reference frame,
where the observation took place. The coordinatemustbe
valid at the epochMJD-AVG or DATE-AVG.

Information on the relative radial velocity between the ob-
server and the selected standard of rest in the direction of the
celestial reference coordinatemaybe provided, and if soshall
be given by theVELOSYSa keyword. The frame of rest defined
with respect to the emitting source may be represented inFITS;
for this reference frame it is necessary to define the velocity with
respect to some other frame of rest. The keywordsSPECSYSa and
ZSOURCEa are used to document the choice of reference frame
and the value of the systemic velocity of the source, respectively.

SSYSSRCa – [string; default: none]. Reference frame for the
value expressed in theZSOURCEa keyword to document the
systemic velocity of the observed source. Valuemustbe one
of those given in Table 27exceptfor ’SOURCE’.

VELOSYSa – [floating point; default: none]. Relative radial ve-
locity between the observer and the selected standard of rest

35

Table 25: Reserved spectral-coordinate type codes.

Code1 Type Symbol Associated Default units
variable

FREQ Frequency ν ν Hz
ENER Energy E ν J
WAVN Wavenumber κ ν m−1

VRAD Radio velocity2 V ν m s−1

WAVE Vacuum wavelength λ λ m
VOPT Optical velocity2 Z λ m s−1

ZOPT Redshift z λ ...
AWAV Air wavelength λa λa m
VELO Apparent radial velocity v v m s−1

BETA Beta factor (v/c) β v ...

(1) Characters 1 through 4 of the value of the keywordCTYPEia. (2) By convention, the ‘radio’ velocity is given byc(ν0 − ν)/ν0 and the ‘optical’
velocity is given byc(λ − λ0)/λ0.

Table 27: Spectral reference systems.

Value Definition

’TOPOCENT’ Topocentric
’GEOCENTR’ Geocentric
’BARYCENT’ Barycentric
’HELIOCEN’ Heliocentric
’LSRK’ Local standard of rest (kinematic)
’LSRD’ Local standard of rest (dynamic)
’GALACTOC’ Galactocentric
’LOCALGRP’ Local Group
’CMBDIPOL’ Cosmic-microwave-background dipole
’SOURCE’ Source rest frame

Notes.These are the allowed values of theSPECSYSa, SSYSOBSa, and
SSYSSRCa keywords.

in the direction of the celestial reference coordinate. Units
mustbe m s−1. The CUNITia keyword is not used for this
purpose since the WCS Versiona might not be expressed in
velocity units.

ZSOURCEa – [floating point; default: none]. Radial velocity
with respect to an alternative frame of rest, expressed as a
unitless redshift (i.e., velocity as a fraction of the speedof
light in vacuum). Used in conjunction withSSYSSRCa to
document the systemic velocity of the observed source.

VELANGLa – [floating point; default:+90.]. In the case of rela-
tivistic velocities (e.g., a beamed astrophysical jet) thetrans-
verse velocity component is important. This keywordmay
be used to express the orientation of the space velocity vec-
tor with respect to the plane of the sky. See Appendix A of
reference Greisen et al. (2006) for further details.

8.5. Conventional-coordinate types

The first FITS paper (Wells et al. 1981) listed a number of
‘suggested values’ for theCTYPEi keyword. Two of these have
the attribute the associated world coordinates can assume only
integer values and that the meaning of these integers is only
defined by convention. The first ‘conventional’ coordinate is
CTYPEia = ’COMPLEX’ to specify that complex values (i.e., pairs
of real and imaginary components) are stored in the data array
(along with an optional weight factor). Thus, the complex axis
of the data array will contain two values (or three if the weight is

Table 28: Example keyword records for a 100-element array of
complex values.

Keyword records

SIMPLE = T

BITPIX = -32

NAXIS = 2

NAXIS1 = 2

NAXIS2 = 100

CTYPE1 = 'COMPLEX'

CRVAL1 = 0.

CRPIX1 = 0.

CDELT1 = 1.

END

Table 29: Conventional Stokes values.

Value Symbol Polarization

1 ’I’ Standard Stokes unpolarized
2 ’Q’ Standard Stokes linear
3 ’U’ Standard Stokes linear
4 ’V’ Standard Stokes circular
−1 ’RR’ Right-right circular
−2 ’LL’ Left-left circular
−3 ’RL’ Right-left cross-circular
−4 ’LR’ Left-right cross-circular
−5 ’XX’ X parallel linear
−6 ’YY’ Y parallel linear
−7 ’XY’ XY cross linear
−8 ’YX’ YXcross linear

specified). By convention, the real component has a coordinate
value of 1, the imaginary component has a coordinate value of2,
and the weight, if any, has a coordinate value of 3. Table 28 illus-
trates the required keywords for an array of 100 complex values
(without weights).

The second conventional coordinate isCTYPEia = ’STOKES’
to specify the polarization of the data. Conventional values, their
symbols, and polarizations are given in Table 29.

9. Representations of time coordinates

Time as a dimension in astronomical data presents challenges
for its representation inFITS files. This section formulates the
representation of the time axis, or possibly multiple time axes,

36

into the world-coordinate system (WCS) described in Sect. 8.
Much of the basic structure is employed, while extensions are
developed to cope with the differences between time and spatial
dimensions; notable amongst these differences is the huge dy-
namic range, covering the highest resolution timing relative to
the age of the universe.

The precision with which any time stamp conforms to any
conventional time scale is highly dependent on the character-
istics of the acquiring system. The definitions of many conven-
tional time scales vary over their history along with the precision
that can be attributed to any time stamp. The meaning of any
time stamp may be ambiguous if a time scale is used for dates
prior to its definition by a recognized authority, or for dates af-
ter that definition is abandoned. However, common sense should
prevail: the precision in the description of the time coordinate
shouldbe appropriate to the accuracy of the temporal informa-
tion in the data.

9.1. Time values

The three most common ways to specify time are: ISO-8601
(ISO 2004b), Julian Date (JD), or Modified Julian Date (MJD
= JD− 2, 400, 000.5; see IAU 1997). Julian Dates are counted
from Julian proleptic calendar date 1 January 4713 BCE at noon,
or Gregorian proleptic calendar date 24 November 4714 BCE,
also at noon. For an explanation of the calendars, see Rots etal.
(2015). Even though it is common to think of certain represen-
tations of time as absolute, time values inFITS files shall all
be considered relative: elapsed time since a particular reference
point in time. It may help to view the “absolute” values as merely
relative to a globally accepted zero point. For a discussionof
the precision required to represent time values in floating-point
numbers, see Rots et al. (2015).

9.1.1. ISO-8601 datetime strings

FITS datetime strings conform to a subset of ISO-8601 (which
in itself does not imply a particular time scale) for severaltime-
related keywords (Bunclark & Rots 1997), such asDATE-xxxx.
Heredatetimewill be used as a pseudo data type to indicate its
use, although its valuesmustbe written as a character string in
’A’ format. The full specification for the format of thedatetime
string has been:

CCYY-MM-DD[Thh:mm:ss[.s...]]

in which all of the time partmay be omitted (just leaving
the date) or the decimal secondsmaybe omitted. Leading ze-
ros must notbe omitted and timezone designators arenot al-
lowed. This definition is extended to allow five-digit years with a
mandatorysign, in accordance with ISO-8601. That is, oneshall
use either theunsignedfour-digit year format, or thesignedfive-
digit year format shown below.

[±C]CCYY-MM-DD[Thh:mm:ss[.s...]]

Note the following.

– In counting years, ISO-8601 follows the convention of in-
cluding Year Zero. Consequently, for negative year numbers
there is an offset of one from BCE dates, which do not rec-
ognize a Year Zero. Thus Year 1 corresponds to 1 CE, Year 0
to 1 BCE, Year−1 to 2 BCE, and so on.

– The earliest date that may be represented in the four-digit
year format is’0000-01-01T00:00:00’ (in the year 1
BCE); the latest date is’9999-12-31T23:59:59’. This
representation of time is tied to the Gregorian calendar. In
conformance with the present ISO-8601:2004(E) standard
(ISO 2004b) dates prior to 1582mustbe interpreted ac-
cording to the proleptic application of the rules of Gregorius
XIII. For dates not covered by that range the use of Modified
Julian Date (MJD) or Julian Date (JD) numbers or the use of
the signed five-digit year format isrecommended.

– In the five-digit year format the earliest and latest dates are
’-99999-01-01T00:00:00’ (i.e.,−100 000 BCE) and
’+99999-12-31T23:59:59’.

– The origin of JD can be written as:
’-04713-11-24T12:00:00’.

– In the UTC time scale the integer part of the seconds field
runs from 00 to 60 (in order to accommodate leap seconds);
in all other time scales the range is 00 to 59.

– The ISO-8601datetimedata type isnot allowedin image-
axis descriptions sinceCRVAL is required to be a floating-
point value.

– ISO-8601datetimedoes not imply the use of any particular
time scale (see Sect. 9.2.1).

– As specified by Bunclark & Rots (1997), time zones are ex-
plicitly not supported inFITSand, consequently, appending
the letter’Z’ to aFITS ISO-8601 string isnot allowed. The
rationale for this rule is that its role in the ISO standard is
that of a time-zone indicator, not a time-scale indicator. As
the concept of a time zone is not supported inFITS, the use
of time-zone indicator is inappropriate.

9.1.2. Julian and Besselian epochs

In a variety of contextsepochsare provided with astronomical
data. Until 1976 these were commonly based on the Besselian
year (see Sect. 9.3), with standard epochs B1900.0 and B1950.0.
After 1976 the transition was made to Julian epochs based on
the Julian year of 365.25 days, with the standard epoch J2000.0.
They are tied to the ET and TDB time scales, respectively. Note
that the Besselian epochs are scaled by the variable length of the
Besselian year (see Sect. 9.3 and its cautionary note, whichalso
applies to this context). The Julian epochs are easier to calculate,
as long as one keeps track of leap days.

9.2. Time coordinate frame

9.2.1. Time scale

Thetime scaledefines the temporal reference frame, and is spec-
ified in the header in one of a few ways, depending upon the con-
text. When recorded as a global keyword, the time scaleshallbe
specified by the following keyword.

TIMESYS – [string; default:’UTC’]. The value field of this key-
wordshall contain a character-string code for the time scale
of the time-related keywords. Therecommendedvalues for
this keyword in Table 30 have well-defined meanings, but
other valuesmaybe used. If this keyword is absent,’UTC’
mustbe assumed.

In relevant contexts (e.g., time axes in image arrays, table
columns, or random groups)TIMESYS maybe overridden by a

37

time scale recorded inCTYPEia, its binary-table equivalents, or
PTYPEi (see Table 22).

The keywordsTIMESYS, CTYPEia, TCTYPn, andTCTYna or
binary-table equivalentmayassume the values listed in Table 30.
In addition, for backward compatibility, all exceptTIMESYS and
PTYPEi may also assume the value’TIME’ (case-insensitive),
whereupon the time scaleshall be that recorded inTIMESYS or,
in its absence, its default value,’UTC’. As noted above, local
time scales other than those listed in Table 30maybe used, but
their useshouldbe restricted to alternate coordinates in order
that the primary coordinates will always refer to a properlyrec-
ognized time scale.

See Rots et al. (2015), Appendix A, for a detailed discussion
of the various time scales. In cases where high-precision timing
is important onemayappend a specific realization, in parenthe-
ses, to the values in the table; e.g.,’TT(TAI)’, ’TT(BIPM08)’,
’UTC(NIST)’. Note that linearity is not preserved across all
time scales. Specifically, if the reference position remains un-
changed (see Sect. 9.2.3), the first ten, with the exception of
’UT1’, are linear transformations of each other (excepting leap
seconds), as are’TDB’ and ’TCB’. On average’TCB’ runs
faster than’TCG’ by approximately 1.6 × 10−8, but the trans-
formation from ’TT’ or ’TCG’ (which are linearly related)
is to be achieved through a time ephemeris as provided by
Irwin & Fukushima (1999).

The relations between coordinate time scales and their dy-
namical equivalents have been defined as:

T(TCG)= T(TT) + LG × 86400× (JD(TT) − JD0)
T(TDB) = T(TCB)−LB×86400×(JD(TCB)−JD0)+T DB0,

where:

T is in seconds
LG = 6.969290134× 10−10

LB = 1.550519768× 10−8

JD0 = 2443144.5003725
T DB0 = −6.55× 10−5 s.

Linearity is virtually guaranteed since images and individual ta-
ble columns do not allow more than one reference position to
be associated with them, and since there is no overlap between
reference positions that are meaningful for the first nine time
scales on the one hand, and for the barycentric ones on the other.
All use of the GMT time scale inFITS files shall be taken to
have its zero point at midnight, conformant with UT, including
dates prior to 1925. For high-precision timing prior to 1972, see
Rots et al. (2015), Appendix A.

Some time scales in use are not listed in Table 30 because
they are intrinsically unreliable or ill-defined. When used, they
shouldbe tied to one of the existing scales with appropriate spec-
ification of the uncertainties; the same is true for free-running
clocks. However, a local time scale such as MET (Mission
Elapsed Time) or OET (Observation Elapsed Time)maybe de-
fined for practical reasons. In those cases the time reference
value (see Sect. 9.2.2)shall not be applied to the values, and
it is stronglyrecommendedthat such time scales be provided as
alternate time scales, with a defined conversion to a recognized
time scale.

It is useful to note that while UT1 is, in essence, an angle (of
the Earth’s rotation –i.e.,aclock), the others are SI-second coun-
ters (chronometers); UTC, by employing leap seconds, serves as
a bridge between the two types of time scales.

Table 30: Recognized Time Scale Values

Value Meaning

’TAI’ (International Atomic Time): atomic-time standard
maintained on the rotating geoid

’TT’ (Terrestrial Time; IAU standard): defined on the ro-
tating geoid, usually derived as TAI+ 32.184 s

’TDT’ (Terrestrial Dynamical Time): synonym for TT (dep-
recated)

’ET’ (Ephemeris Time): continuous with TT;should not
be used for data taken after 1984-01-01

’IAT’ synonym for TAI (deprecated)
’UT1’ (Universal Time): Earth rotation time
’UTC’ (Universal Time, Coordinated; default): runs syn-

chronously with TAI, except for the occasional in-
sertion of leap seconds intended to keep UTC within
0.9 s of UT1; as of 2015-07-01 UTC= TAI − 36 s

’GMT’ (Greenwich Mean Time): continuous with UTC; its
use is deprecated for dates after 1972-01-01

UT()1 (Universal Time, with qualifier): for high-precision
use of radio-signal distributions between 1955 and
1972; see Rots et al. (2015), Appendix A

’GPS’ (Global Positioning System): runs (approximately)
synchronously with TAI; GPS≈ TAI − 19 s

’TCG’ (Geocentric Coordinate Time): TT reduced to the
geocenter, corrected for the relativistic effects of
the Earth’s rotation and gravitational potential; TCG
runs faster than TT at a constant rate

’TCB’ (Barycentric Coordinate Time): derived from TCG
by a four-dimensional transformation, taking into ac-
count the relativistic effects of the gravitational po-
tential at the barycenter (relative to that on the ro-
tating geoid) as well as velocity time-dilation vari-
ations due to the eccentricity of the Earth’s orbit,
thus ensuring consistency with fundamental physi-
cal constants; Irwin & Fukushima (1999) provide a
time ephemeris

’TDB’ (Barycentric Dynamical Time): runs slower than
TCB at a constant rate so as to remain approximately
in step with TT; runs therefore quasi-synchronously
with TT, except for the relativistic effects intro-
duced by variations in the Earth’s velocity relative
to the barycenter. When referring to celestial ob-
servations, a pathlength correction to the barycenter
may be needed, which requires the Time Reference
Direction used in calculating the pathlength correc-
tion.

’LOCAL’ for simulation data and for free-running clocks.

1Specific realization codesmaybe appended to these values, in
parentheses; see the text. For a more-detailed discussion of time
scales, see Rots et al. (2015), Appendix A.

9.2.2. Time reference value

The time reference value isnot required to be present in an
HDU. However, if the time reference point is specified explic-
itly it mustbe expressed in one of ISO-8601, JD, or MJD. These
reference valuesmust onlybe applied to time values associated
with one of the recognized time scales listed in Table 30, andthat
time scalemustbe specified explicitly or implicitly as explained
in Sect. 9.2.1.

The reference point in time, to which all times in the HDU
are relative,shall be specified through one of three keywords
specified below.

38

MJDREF – [floating-point]; default:0.0] The value field of this
keyword shall contain the value of the reference time in
MJD.

JDREF – [floating-point; default: none] The value field of this
keywordshallcontain the value of the reference time in JD.

DATEREF – [datetime; default: none] The value field of this key-
word shall contain a character-string representation of the
reference time in ISO-8601 format.

MJDREF andJDREF may, for clarity or precision reasons, be split
into two keywords holding the integer and fractional parts sepa-
rately.

MJDREFI – [integer; default:0] The value field of this keyword
shall contain the integer part of reference time in MJD.

MJDREFF – [floating-point; default:0.0] The value field of this
keywordshallcontain the fractional part of reference time in
MJD.

JDREFI – [integer; default: none] The value field of this key-
wordshallcontain the integer part of reference time in JD.

JDREFF – [floating-point; default: none] The value field of this
keywordshallcontain the fractional part of reference time in
JD.

If [M]JDREF and both[M]JDREFI and [M]JDREFF are
present, the integer and fractional valuesshall have precedence
over the single value. If the single value is present with oneof
the two parts, the single valueshall have precedence. In the fol-
lowing, MJDREF andJDREF refer to their literal meaning or the
combination of their integer and fractional parts. If a header
contains more than one of these keywords,JDREF shall have
precedence overDATEREF and MJDREF shall have precedence
over both the others. If none of the three keywords is present,
there is no problem as long as all times in the HDU are ex-
pressed in ISO-8601; otherwiseMJDREF= 0.0mustbe assumed.
If TREFPOS= ’CUSTOM’ (Sect. 9.2.3), it is legitimate for none of
the reference-time keywords to be present, as one may assume
the data are from a simulation. Note that thevalueof the refer-
ence time has global validity for all time values, but it doesnot
have a particular time scale associated with it.

9.2.3. Time reference position

An observation is an event in space-time. The reference position
specifies the spatial location at which the time is valid, either
where the observation was made or the point in space for which
light-time corrections have been applied. When recorded asa
global keyword, the time reference positionshall be specified
by the following keyword.

TREFPOS – [string; default:’TOPOCENTER’]. The value field
of this keywordshall contain a character-string code for the
spatial location at which the observation time is valid. The
valueshouldbe one of those given in Table 31. This keyword
shall apply to time-coordinate axes in images as well.

In binary tables, different columnsmayrepresent completely
different Time Coordinate Frames. However, each column can
have only one time reference position, thus guaranteeing linear-
ity (see Sect. 9.2.1).

TRPOSn – [string; default:’TOPOCENTER’] The value field of
this keywordshall contain a character-string code for the
spatial location at which the observation time is valid. This
table keywordshalloverrideTREFPOS.

The reference position valuemay be a standard location
(such as’GEOCENTER’ or ’TOPOCENTER’) or a point in space
defined by specific coordinates. In the latter case one shouldbe
aware that a (three-dimensional) spatial-coordinate frame needs
to be defined that is likely to be different from the frame(s) with
which the data are associated. Note that’TOPOCENTER’ is only
moderately informative if no observatory location is provided
or indicated. The commonly allowed standard values are shown
in Table 31. Note that for the gaseous planets the barycenters of
their planetary systems, including satellites, are used for obvious
reasons. While it is preferable to spell the location names out in
full, in order to be consistent with the practice of Greisen et al.
(2006) the values are allowed to be truncated to eight characters.
Furthermore, in order to allow for alternative spellings, only the
first three characters of all these valuesshall be considered sig-
nificant. The value of the keywordshall be case-sensitive.

Table 31: Standard Time Reference Position Values

Value1 Meaning

’TOPOCENTER’ Topocenter: the location from where the ob-
servation was made (default)

’GEOCENTER’ Geocenter
’BARYCENTER’ Barycenter of the Solar System
’RELOCATABLE’ Relocatable: to be used for simulation data

only
’CUSTOM’ A position specified by coordinates that is

not the observatory location

Less-common, but allowed standard values

’HELIOCENTER’ Heliocenter
’GALACTIC’ Galactic center

’EMBARYCENTER’ Earth-Moon barycenter
’MERCURY’ Center of Mercury

’VENUS’ Center of Venus
’MARS’ Center of Mars

’JUPITER’ Barycenter of the Jupiter system
’SATURN’ Barycenter of the Saturn system
’URANUS’ Barycenter of the Uranus system

’NEPTUNE’ Barycenter of the Neptune system

Notes.(1)Recognized values forTREFPOS, TRPOSn; only the first three
characters of the values are significant and Solar System locations are
as specified in the ephemerides.

The reader is cautioned that time scales and reference po-
sitions cannot be combined arbitrarily if one wants a clock
that runs linearly atTREFPOS. Table 32 provides a summary
of compatible combinations.’BARYCENTER’ should only be
used in conjunction with time scales’TDB’ and ’TCB’, and
should be the only reference position used with these time
scales. With proper care’GEOCENTER’, ’TOPOCENTER’, and
’EMBARYCENTER’ are appropriate for the first ten time scales
in Table 30. However, relativistic effects introduce a (generally
linear) scaling in certain combinations; highly eccentricspace-
craft orbits are the exceptions. Problems will arise when using
a reference position on another Solar System body (including
’HELIOCENTER’). Therefore, it isrecommendedto synchronize

39

Table 32: Compatibility of Time Scales and Reference Positions

Reference Time scale1

Position TT, TDT TCG TDB TCB LOCAL
TAI, IAT

GPS
UTC, GMT

’TOPOCENTER’ t ls
’GEOCENTER’ ls c
’BARYCENTER’ ls c
’RELOCATABLE’ c
Other2 re re

Notes.(1)Legend (combination isnot recommendedif there is no entry);
c: correct match; reference position coincides with the spatial origin of
the space-time coordinates;t: correct match on Earth’s surface, other-
wise usually linear scaling;ls: linear relativistic scaling;re: non-linear
relativistic scaling.(2)All other locations in the Solar System.

the local clock with one of the time scales defined on the Earth’s
surface,’TT’, ’TAI’, ’GPS’, or’UTC’ (in the last case: beware
of leap seconds). This is common practice for spacecraft clocks.
Locally, such a clock will not appear to run at a constant rate, be-
cause of variations in the gravitational potential and in motions
with respect to Earth, but the effects can be calculated and are
probably small compared with errors introduced by the alterna-
tive: establishing a local time standard.

In order to provide a complete description,’TOPOCENTER’

requires the observatory’s coordinates to be specified. There
are three options:(a) the ITRS Cartesian coordinates defined
in Sect. 8.4.1 (OBSGEO-X, OBSGEO-Y, OBSGEO-Z), which are
strongly preferred; (b) a geodetic latitude/longitude/elevation
triplet (defined below); or(c) a reference to an orbit-ephemeris
file. A set of geodetic coordinates is recognized by the following
keywords.

OBSGEO-B – [floating-point] The value field of this keyword
shall contain the latitude of the observation in deg, with
North positive.

OBSGEO-L – [floating-point] The value field of this keyword
shall contain the longitude of the observation in deg, with
East positive.

OBSGEO-H – [floating-point] The value field of this keyword
shall contain the altitude of the observation in meters.

An orbital-ephemeris file can instead be specified.

OBSORBIT – [string] The value field of this keywordshallcon-
tain the character-string URI, URL, or the name of an orbit-
ephemeris file.

Beware that only one set of coordinates is allowed in a given
HDU. Cartesian ITRS coordinates are the preferred coordinate
system; however, when using these in an environment requir-
ing nanosecond accuracy, one should take care to distinguish
between meters consistent with TCG or with TT. If one uses
geodetic coordinates, the geodetic altitudeOBSGEO-H is mea-
sured with respect to the IAU 1976 ellipsoid, which is defined
as having a semi-major axis of 6 378 140 m and an inverse flat-
tening of 298.2577.

A non-standard location indicated by’CUSTOM’ must be
specified in a manner similar to the specification of the obser-
vatory location (indicated by’TOPOCENTER’). One should be

careful with the use of the’CUSTOM’ value and not confuse it
with ’TOPOCENTER’, as use of the latter imparts additional in-
formation on the provenance of the data.

ITRS coordinates (X,Y,Z) may be derived from geodetic co-
ordinates (L,B,H) through:

X = (N(B) + H) cos(L) cos(B)

Y = (N(B) + H) sin(L) cos(B)

Z = (N(B)(1− e2) + H) sin(B)

where:

N(B) =
a

√

1− e2 sin2(B)

e2 = 2 f − f 2

a is the semi-major axis, andf is the inverse of the in-
verse flattening. Nanosecond precision in timing requires that
OBSGEO-[BLH] be expressed in a geodetic reference frame de-
fined after 1984 in order to be sufficiently accurate.

9.2.4. Time reference direction

If any pathlength corrections have been applied to the time
stamps (i.e., if the reference position is not’TOPOCENTER’ for
observational data), the reference direction that is used in calcu-
lating the pathlength delayshouldbe provided in order to main-
tain a proper analysis trail of the data. However, this is useful
only if there is also information available on the location from
where the observation was made (the observatory location).The
direction will usually be provided in a spatial-coordinateframe
that is already being used for the spatial metadata, although it is
conceivable that multiple spatial frames are involved, e.g., spher-
ical ICRS coordinates for celestial positions, and Cartesian FK5
for spacecraft ephemeris. The time reference direction does not
by itself provide sufficient information to perform a fully correct
transformation; however, within the context of a specific analysis
environment it should suffice.

The uncertainty in the reference direction affects the errors
in the time stamps. A typical example is provided by barycentric
corrections where the time error is related to the position error:

terr(ms)≤ 2.4 poserr(arcsec).

The reference direction is indicated through a reference tospe-
cific keywords. These keywordsmayhold the reference direction
explicitly or (for data inBINTABLE extensions) indicate columns
holding the coordinates. In event lists where the individual pho-
tons are tagged with a spatial position, those coordinatesmay
have been used for the reference direction and the referencewill
point to the columns containing these coordinate values. The
time reference directionshallbe specified by the following key-
word.

TREFDIR – [string] The value field of this keywordshall con-
tain a character string composed of: the name of the key-
word containing the longitudinal coordinate, followed by a
comma, followed by the name of the keyword containing the
latitudinal coordinate. This reference directionshallapply to
time-coordinate axes in images as well.

40

In binary tables, different columnsmayrepresent completely
different Time Coordinate Frames. However, also in that situ-
ation the condition holds that each column can have only one
Time Reference Direction. Hence, the following keywordmay
overrideTREFDIR.

TRDIRn – [string] The value field of this keywordshallcontain
a character string consisting of the name of the keyword or
column containing the longitudinal coordinate, followed by
a comma, followed by the name of the keyword or column
containing the latitudinal coordinate. This reference direc-
tion shall apply to time-coordinate axes in images as well.

9.2.5. Solar System ephemeris

If applicable, the Solar System ephemeris used for calculating
pathlength delaysshouldbe identified. This is particularly perti-
nent when the time scale is’TCB’ or ’TDB’. The ephemerides
that are currently most often used are those from JPL (2014a,b).

The Solar System ephemeris used for the data (if required)
shallbe indicated by the following keyword.

PLEPHEM – [string; default: ’DE405’] The value field of
this keywordshall contain a character string thatshould
represent a recognized designation for the Solar System
ephemeris. Recognized designations for JPL Solar System
ephemerides that are often used are listed in Table 33.

Table 33: Valid Solar System ephemerides

Value Reference

’DE200’ Standish (1990); considered obsolete, but still in use
’DE405’ Standish (1998); default
’DE421’ Folkner, et al. (2009)
’DE430’ Folkner, et al. (2014)
’DE431’ Folkner, et al. (2014)
’DE432’ Folkner, et al. (2014)

Future ephemerides in this seriesshall be accepted and rec-
ognized as they are released. Additional ephemerides designa-
tionsmaybe recognized by the IAUFWG upon request.

9.3. Time unit

When recorded as a global keyword, the unit used to express
timeshall be specified by the following keyword.

TIMEUNIT – [string; default:’s’] The value field of this key-
word shall contain a character string that specifies the time
unit; the valueshouldbe one of those given in Table 34. This
time unitshall apply to all time instances and durations that
do not have an implied time unit (such as is the case for JD,
MJD, ISO-8601, J and B epochs). If this keyword is absent,
’s’ shallbe assumed.

In an appropriate context, e.g., when an image has a time axis,
TIMEUNIT may be overridden by theCUNITia keywords and
their binary-table equivalents (see Table 22).

The specification of the time unit allows the values defined
in Greisen & Calabretta (2002), shown in Table 34, with the ad-
dition of the century. See also Sect. 4.3 for generalities about
units.

Table 34: Recommended time units

Value Definition

’s’ second (default)
’d’ day (= 86,400 s)
’a’ (Julian) year (= 365.25 d)
’cy’ (Julian) century (= 100 a)

The following values are also acceptable.

’min’ minute (= 60 s)
’h’ day (= 86,400 s)
’yr’ (Julian) year (= ’a’ = 365.25

d)
’ta’ tropical year
’Ba’ Besselian year

The use of’ta’ and’Ba’ is not encouraged, but there are
data and applications that require the use of tropical yearsor
Besselian epochs (see Sect. 9.1.2). The length of the tropical
year,’ta’, in days is:

1 ta = 365.24219040211236− 0.00000615251349T

−6.0921× 10−10 T2 + 2.6525× 10−10 T3 (d)

whereT is in Julian centuries since J2000, using time scale TDB.
The length of the Besselian year in days is:

1Ba= 365.2421987817− 0.00000785423T (d)

whereT is in Julian centuries since J1900, using time scale ET,
although for these purposes the difference with TDB is negligi-
ble.

Readers are cautioned that the subject of tropical and
Besselian years presents a particular quandary for the specifi-
cation of standards. The expressions presented here are themost
accurate available, but are applicable for use when creating data
files (which is strongly discouraged), rather than for interpreting
existing data that are based upon these units. However, there is
no guarantee that the authors of the data applied these particu-
lar definitions. Users are therefore advised to pay close attention
and attempt to ascertain what the authors of the data really used.

9.4. Time offset, binning, and errors

9.4.1. Time offset

A uniform clock correctionmaybe applied in bulk with the fol-
lowing single keyword.

TIMEOFFS – [floating-point; default:0.0] The value field of
this keywordshall contain the value of the offset in time
that shall be added to the reference time, given by one of:
MJDREF, JDREF, or DATEREF.

The time offset may serve to set a zero-point offset to a rela-
tive time series, allowing zero-relative times, or just higher pre-
cision, in the time stamps. Its default value is zero. The value of
this keyword affects the values ofTSTART, andTSTOP, as well as
any time pixel values in a binary table. However, this construct
mayonly be used in tables andmust notbe used in images.

41

9.4.2. Time resolution and binning

The resolution of the time stamps (the width of the time sam-
pling function)shall be specified by the following keyword.

TIMEDEL – [floating-point] The value field of this keyword
shall contain the value of the time resolution in the units of
TIMEUNIT. This construct, when present,shall onlybe used
in tables andmust notbe used in images.

In tables this may, for instance, be the size of the bins for time-
series data or the bit precision of the time-stamp values.

When data are binned in time bins (or, as a special case,
events are tagged with a time stamp of finite precision) it is im-
portant to know to the position within the bin (or pixel) to which
the time stamp refers. Coordinate values normally correspond
to the center of all pixels (see Sect. 8.2); yet clock readings are
effectively truncations, not rounded values, and therefore corre-
spond to the lower bound of the pixel.

TIMEPIXR – [floating-point; default:0.5] The value field of
this keywordshall contain the value of the position within
the pixel, from 0.0 to 1.0, to which the time-stamp refers.
This construct, when present,shall only be used in tables
andmust notbe used in images.

A value of0.0 may be more common in certain contexts, e.g.
when truncated clock readings are recorded, as is the case for
almost all event lists.

9.4.3. Time errors

The absolute time error is the equivalent of a systematic error,
shallbe given by the following keyword.

TIMSYER – [floating-point; default:0.] The value field of this
keywordshallcontain the value of the absolute time error, in
units ofTIMESYS.

This keywordmaybe overridden, in appropriate context (e.g.,
time axes in image arrays or table columns; by theCSYERia key-
words and their binary-table equivalents (see Table 22).

The relative time error specifies accuracy of the time stamps
relative to each other. This error will usually be much smaller
than the absolute time error. This error is equivalent to a random
error, andshallbe given by the following keyword.

TIMRDER – [floating-point; default:0.] The value field of this
keywordshallcontain the value of the relative time error, i.e.
the random error between time stamps, in units ofTIMESYS.

This keywordmaybe overridden, in appropriate context (e.g.,
time axes in image arrays or table columns; by theCRDERia key-
words and their binary-table equivalents (see Table 22).

9.5. Global time keywords

The time keywords in Table 35 are likely to occur in headers
even when there are no time axes in the data. Except forDATE,
they provide the top-level temporal bounds of the data in the
HDU. As noted before, they may also be implemented as table
columns. Keywords not previously described are defined below;
all are included in the summary Table 22.

Table 35: Keywords for global time values

Keyword Notes

DATE Defined in Sect. 4.4.2.
DATE-OBS Defined in Sect. 4.4.2. Keyword value was not re-

stricted to mean the start time of an observation, and
has historically also been used to indicate some form
of mean observing date and time. To avoid ambiguity
useDATE-BEG instead.

DATE-BEG Defined in this section.
DATE-AVG Defined in Sect. 8.4.1. The method by which aver-

age times should be calculated is not defined by this
Standard.

DATE-END Defined in this section.
MJD-OBS Defined in Sect. 8.3.
MJD-BEG Defined in this section.
MJD-AVG Defined in Sect. 8.4.1. The method by which aver-

age times should be calculated is not defined by this
Standard.

MJD-END Defined in this section.
TSTART Defined in this section.
TSTOP Defined in this section.

DATE-BEG – [datetime] The value field of this keywordshall
contain a character string in ISO-8601 format that specifies
the start time of data acquisition in the time system specified
by theTIMESYS keyword.

DATE-END – [datetime] The value field of this keywordshall
contain a character string in ISO-8601 format that specifies
the stop time of data acquisition in the time system specified
by theTIMESYS keyword.

MJD-BEG – [floating-point] The value field of this keyword
shallcontain the value of the MJD start time of data acquisi-
tion in the time system specified by theTIMESYS keyword.

MJD-END – [floating-point] The value field of this keyword
shallcontain the value of the MJD stop time of data acquisi-
tion in the time system specified by theTIMESYS keyword.

TSTART – [floating-point] The value field of this keywordshall
contain the value of the start time of data acquisition in units
of TIMEUNIT, relative toMJDREF, JDREF, or DATEREF and
TIMEOFFS, in the time system specified by theTIMESYS key-
word.

TSTOP – [floating-point] The value field of this keywordshall
contain the value of the stop time of data acquisition in units
of TIMEUNIT, relative toMJDREF, JDREF, or DATEREF and
TIMEOFFS, in the time system specified by theTIMESYS key-
word.

The alternate-axis equivalent keywords forBINTABLE ex-
tensions,DOBSn, MJDOBn, DAVGn, and MJDAn, as defined in
Table 22, are also allowed. Note that of the above onlyTSTART

andTSTOP are relative to the time reference value. As in the case
of the time reference value (see Sect. 9.2.2), the JD values su-
persede DATE values, and MJD values supersede both, in cases
where conflicting values are present.

It should be noted that, although they do not represent global
time values within an HDU, theCRVALia andCDELTia keywords,
and their binary-table equivalents (see Table 22), also represent
(binary) time values. They should be handled with the same care
regarding precision when combining them with the time refer-
ence value, as any other time value.

42

Finally, Julian and Besselian epochs (see
Sects. 9.1.2 and 9.3)may be expressed by these two key-
words – to be used with great caution, as their definitions are
more complicated and hence their use more prone to confusion.

JEPOCH – [floating-point] The value field of this keywordshall
contain the value of the Julian epoch, with an implied time
scale of’TDB’.

BEPOCH – [floating-point] The value field of this keywordshall
contain the value of the Besselian epoch, with an implied
time scale of’ET’.

When these epochs are used as time stamps in a table col-
umn, their interpretation will be clear from the context. When
the keywords appear in the header without obvious context, they
mustbe regarded as equivalents ofDATE-OBS andMJD-OBS, i.e.,
with no fixed definition as to what part of the dataset they refer.

9.6. Other time-coordinate axes

There are a few coordinate axes that are related to time and that
are accommodated in this Standard: (temporal)phase, timelag,
and frequency. Phase results from folding a time series on a
given period, and can appear in parallel withtime as an alter-
nate description of the same axis. Timelag is the coordinateof
cross- and auto-correlation spectra. The temporalfrequencyis
the Fourier transform equivalent of time and, particularly, the
coordinate axis of power spectra; spectra where the dependent
variable is the electromagnetic field are excluded here, butsee
Greisen et al. (2006). These coordinate axesshall be specified
by givingCTYPEi and its binary-table equivalents one of the val-
ues:’PHASE’, ’TIMELAG’, or ’FREQUENCY’.

Timelag units are the regular time units, and the basic unit
for frequency is’Hz’. Neither of these two coordinates is a lin-
ear or scaled transformation of time, and therefore cannot appear
in parallel with time as an alternate description. That is, agiven
vector of values for an observable can be paired with a coordi-
nate vector of time, or timelag, or frequency, but not with more
than one of these; the three coordinates are orthogonal.

Phase can appear in parallel with time as an alternate descrip-
tion of the same axis. Phaseshall be recorded in the following
keywords.

CZPHSia – [floating-point] The value field of this keywordshall
contain the value of the time at the zero point of a phase axis.
Its unitsmaybe’deg’, ’rad’, or’turn’.

CPERIia – [floating-point] The value field of this keyword, if
presentshall contain the value of the period of a phase axis.
This keyword can be used only if the period is a constant; if
that is not the case, this keywordshouldeither be absent or
set to zero.

CZPHSia may instead appear in binary-table formsTCZPHn,
TCZPna, iCZPHn, and iCZPna. CPERIia may instead appear in
binary-table formsTCPERn, TCPRna, iCPERn, and iCPRna. The
phase, period, and zero pointshall be expressed in the globally
valid time reference frame and unit as defined by the global key-
words (or their defaults) in the header.

9.7. Durations

There is an extensive collection of header keywords that indi-
cate time durations, such as exposure times, but there are many

pitfalls and subtleties that make this seemingly simple concept
treacherous. Because of their crucial role and common use, key-
words are defined below to record exposure and elapsed time.

XPOSURE – [floating-point] The value field of this keyword
shall contain the value for the effective exposure duration
for the data, corrected for dead time and lost time in the units
of TIMEUNIT. If the HDU contains multiple time slices, this
valueshall be the total accumulated exposure time over all
slices.

TELAPSE – [floating-point] The value field of this keyword
shall contain the value for the amount of time elapsed, in
the units ofTIMEUNIT, between the start and the end of the
observation or data stream.

Durationsmust notbe expressed in ISO-8601 format, but
only as actual durations (i.e., numerical values) in the units of
the specified time unit.

Good-Time-Interval (GTI) tables are common for exposures
with gaps in them, particularly photon-event files, as they make
it possible to distinguish time intervals with “no signal detected”
from “no data taken.” GTI tables inBINTABLE extensionsmust
contain two mandatory columns,START andSTOP, andmaycon-
tain oneoptionalcolumn,WEIGHT. The first two define the inter-
val, the third, with a value between 0 and 1, the quality of thein-
terval; i.e.,a weight of 0 indicates aBad-Time-Interval.WEIGHT
has a default value of 1. Any time interval not covered in the
tableshallbe considered to have a weight of zero.

9.8. Recommended best practices

The following guidelines should be helpful in creating dataprod-
ucts with a complete and correct time representation.

– The presence of the informationalDATE keyword isstrongly
recommendedin all HDUs.

– One or more of the informational keywordsDATE-xxxx
and/or MJD-xxxx shouldbe present in all HDUs whenever a
meaningful value can be determined. This also applies, e.g.,
to catalogs derived from data collected over a well-defined
time range.

– The global keywordTIMESYS is strongly recommended.
– The global keywordsMJDREF or JDREF or DATEREF are

recommended.
– The remaining informational and global keywordsshouldbe

present whenever applicable.
– All context-specific keywordsshallbe present as needed and

requiredby the context of the data.

9.8.1. Global keywords and overrides

For reference to the keywords that are discussed here, see
Table 22. The globally applicable keywords listed in Sect. Bof
the table serve as default values for the correspondingC* and
TC* keywords in that same section, but only when axis and col-
umn specifications (including alternate coordinate definitions)
use a time scale listed in Table 30, or when the corresponding
CTYPE or TTYPE keywords are set to the value’TIME’. Any al-
ternate coordinate specified in a non-recognized time scaleas-
sumes the value of the axis pixels or the column cells, optionally
modified by applicable scaling and/or reference value keywords;
see also Sect. 9.2.1.

43

9.8.2. Restrictions on alternate descriptions

An image will have at most one time axis as identified by hav-
ing theCTYPEi value of’TIME’ or one of the values listed in
Table 30. Consequently, as long as the axis is identified through
CTYPEi, there is no need to have axis-number identification
on the global time-related keywords. It is expressly prohibited
to specify more than one time reference position on this axis
for alternate time-coordinate frames, since this would give rise
to complicated model-dependent non-linear relations between
these frames. Hence, time scales’TDB’ and’TCB’ (or ’ET’, to
its precision)maybe specified in the same image, but cannot be
combined with any of the first nine time scales in Table 30; those
first nine can be expressed as linear transformations of each
other, too, provided the reference position remains unchanged.
Time scale’LOCAL’ is by itself, intended for simulations, and
should notbe mixed with any of the others.

9.8.3. Image time axes

Sect. 8.2 requires keywordsCRVALia to be numeric and they can-
not be expressed in ISO-8601 format. Therefore it isrequired
thatCRVALia contain the elapsed time in units ofTIMEUNIT or
CUNITia, even if the zero point of time is specified byDATEREF.
If the image does not use a matrix for scaling, rotation, and
shear (Greisen & Calabretta 2002),CDELTia provides the nu-
meric value for the time interval. If thePC form of scaling, ro-
tation, and shear (Greisen & Calabretta 2002) is used,CDELTia
provides the numeric value for the time interval, andPCi j, where
i = j = the index of the time axis (in the typical case of an im-
age cube with Axis 3 being time,i = j = 3) would take the
exact value 1, the default (Greisen & Calabretta 2002). When
the CDi j form of mapping is used,CDi j provides the numeric
value for the time interval. If one of the axes is time and the
matrix form is used, then the treatment of thePCi ja (or CDi ja)
matrices involves at least a Minkowsky metric and Lorentz trans-
formations (as contrasted with Euclidean and Galilean).

10. Representations of compressed data

Minimizing data volume is important in many contexts, partic-
ularly for publishers of large astronomical data collections. The
following sections describe compressed representations of data
in FITS images andBINTABLE extensions that preserve meta-
data and allow for full or partial extraction of the originaldata as
necessary. The resultingFITSfile structure is independent of the
specific data-compression algorithm employed. The implemen-
tation details for some compression algorithms that are widely
used in astronomy are defined in Sect. 10.4, but other compres-
sion techniques could also be supported. See theFITS conven-
tion by White et al. (2013) for details of the compression tech-
niques, but beware that the specifications in this Standardshall
supersede those in the registered convention.

Compression ofFITS files can be beneficial for sites that
store or distribute large quantities of data; the present section
provides a standard framework that addresses such needs. Asim-
plementation of compression/decompression codes can be quite
complex, not all software for reading and writingFITS is nec-

essarily expected to support these capabilities. Externalutilities
are available to compress and decompressFITSfiles15.

10.1. Tiled image compression

The following describes the process for compressing
n−dimensionalFITS images and storing the resulting byte
stream in a variable-length column in aFITS binary table, and
for preserving the image header keywords in the table header.
The general principle is to first divide then−dimensional image
into a rectangular grid of subimages or “tiles.” Each tile isthen
compressed as a block of data, and the resulting compressed
byte stream is stored in a row of a variable-length column
in a FITS binary table (see Sect. 7.3). By dividing the image
into tiles it is possible to extract and decompress subsections
of the image without having to decompress the whole image.
The default tiling pattern treats each row of a two-dimensional
image (or higher-dimensional cube) as a tile, such that each
tile containsNAXIS1 pixels. This default may not be optimal
for some applications or compression algorithms, so any other
rectangular tiling patternmay be defined using keywords that
are defined below. In the case of relatively small images it may
suffice to compress the entire image as a single tile, resulting
in an output binary table containing a single row. In the caseof
three-dimensional data cubes, it may be advantageous to treat
each plane of the cube as a separate tile if application software
typically needs to access the cube on a plane-by-plane basis.

10.1.1. Required keywords

In addition to the mandatory keywords forBINTABLE extensions
(see Sect. 7.3.1) the following keywords are reserved for use in
the header of aFITSbinary-table extension to describe the struc-
ture of a valid compressedFITS image. All are mandatory.

ZIMAGE – [logical; valueT] The value field of this keyword
shall contain the logical valueT to indicate that theFITS
binary-table extension contains a compressed image, and
that logically this extensionshouldbe interpreted as an im-
age rather than a table.

ZCMPTYPE – [string; default: none] The value field of this key-
word shall contain a character string giving the name of the
algorithm that was used to compress the image. Only the val-
ues given in Table 36 are permitted; the corresponding algo-
rithms are described in Sect. 10.4. Other algorithms may be
added in the future.

ZBITPIX – [integer; default: none] The value field of this key-
word shall contain an integer that gives the value of the
BITPIX keyword in the uncompressedFITS image.

ZNAXIS – [integer; default: none] The value field of this key-
word shall contain an integer that gives the value of the
NAXIS keyword (i.e., the number of axes) in the uncom-
pressedFITS image.

ZNAXISn – [integer; indexed; default: none) The value field of
these keywordsshallcontain a positive integer that gives the
value of the correspondingNAXISn keywords (i.e., the size
of Axis n) in the uncompressedFITS image.

15 e.g. fpack/funpack, seehttps://heasarc.gsfc.nasa.gov/
fitsio/fpack/

44

https://heasarc.gsfc.nasa.gov/fitsio/fpack/
https://heasarc.gsfc.nasa.gov/fitsio/fpack/

The comment fields for theBITPIX, NAXIS, and NAXISn
keywords in the uncompressed imageshouldbe copied to the
corresponding fields in theZBITPIX, ZNAXIS, and ZNAXISn
keywords.

10.1.2. Other reserved keywords

The compressed image tilesmustbe stored in the binary table
in the same order that the first pixel in each tile appears in the
FITS image; the tile containing the first pixel in the imagemust
appear in the first row of the table, and the tile containing the
last pixel in the imagemustappear in the last row of the binary
table. The following keywords are reserved for use in describing
compressed images stored inBINTABLE extensions; theymaybe
present in the header, and their values depend upon the type of
image compression employed.

ZTILEn – [integer; indexed; default:1 for n > 1] The value
field of these keywords (wheren is a positive integer index
that ranges from 1 toZNAXIS) shallcontain a positive integer
representing the number of pixels along Axisn of the com-
pressed tiles. Each tile of pixelsmustbe compressed sepa-
rately and stored in a row of a variable-length vector column
in the binary table. The size of each image dimension (given
by ZNAXISn) need not be an integer multiple ofZTILEn, and
if it is not, then the last tile along that dimension of the im-
age will contain fewer image pixels than the other tiles. If the
ZTILEn keywords are not present then the default “row-by-
row” tiling will be assumed, i.e.,ZTILE1 = ZNAXIS1, and
the value of all the otherZTILEn keywordsmustequal1.

ZNAMEi – [string; indexed; default: none] The value field of
these keywords (wherei is a positive integer index start-
ing with 1) shall supply the names of up to 999 algorithm-
specific parameters that are needed to compress or decom-
press the image. The order of the compression parameters
may be significant, andmay be defined as part of the de-
scription of the specific decompression algorithm.

ZVALi – [string; indexed; default: none] The value field of these
keywords (wherei is a positive integer index starting with
1) shall contain the values of up to 999 algorithm-specific
parameters with the same indexi. The value ofZVALi may
have any validFITSdata type.

ZMASKCMP – [string; default: none] The value field of this key-
word shall contain the name of the image compression al-
gorithm that was used to compress the optional null-pixel
data mask. This keywordmaybe omitted if no null-pixel data
masks appear in the table. See Sect. 10.2.2 for details.

ZQUANTIZ – [string; default:’NO DITHER’] The value field of
this keywordshallcontain the name of the algorithm that was
used to quantize floating-point image pixels into integer val-
ues, which were then passed to the compression algorithm as
discussed further in Sect. 10.2. If this keyword is not present,
the default is to assume that no dithering was applied during
quantization.

ZDITHER0 – [integer; default: none] The value field of this key-
word shall contain a positive integer (that may range from 1
to 10000 inclusive) that gives the seed value for the random
dithering pattern that was used when quantizing the floating-
point pixel values. This keywordmaybe absent if no dither-
ing was applied. See Sect. 10.2 for further discussion.

The following keywords are reserved to preserve a verbatim
copy of thevalue and comment fieldsfor keywords in the orig-
inal uncompressedFITS image that were used to describe its
structure. These optional keywords, when present,shall be used
when reconstructing an identical copy of the originalFITSHDU
of the uncompressed image. Theyshould notappear in the com-
pressed image header unless the corresponding keywords were
present in the uncompressed image.

ZSIMPLE – [logical; valueT] The value field of this keyword
mustcontain the value of the originalSIMPLE keyword in
the uncompressed image.

ZEXTEND – [string] The value field of this keywordmustcon-
tain the value of the originalEXTEND keyword in the uncom-
pressed image.

ZBLOCKED – [logical] The value field of this keywordmustcon-
tain the value of the originalBLOCKED keyword in the un-
compressed image.

ZTENSION – [string] The value field of this keywordmustcon-
tain the originalXTENSION keyword in the uncompressed
image.

ZPCOUNT – [integer] The value field of this keywordmustcon-
tain the originalPCOUNT keyword in the uncompressed im-
age.

ZGCOUNT – [integer] The value field of this keywordmustcon-
tain the originalGCOUNT keyword in the uncompressed im-
age.

ZHECKSUM – [string] The value field of this keywordmustcon-
tain the originalCHECKSUM keyword (see Sect. 4.4.2.7) in the
uncompressed image.

ZDATASUM – [string] The value field of this keywordmustcon-
tain the originalDATASUM keyword (see Sect. 4.4.2.7) in the
uncompressed image.

TheZSIMPLE, ZEXTEND, andZBLOCKED keywordsmust not
be used unless the original uncompressed image was contained
in the primary array of aFITS file. TheZTENSION, ZPCOUNT,
andZGCOUNT keywordsmust notbe used unless the original un-
compressed image was contained in anIMAGE extension.

TheFITSheader of the compressed imagemaycontain other
keywords. If aFITS primary array orIMAGE extension is com-
pressed using the procedure described here, it isstrongly rec-
ommendedthat all the keywords (including comment fields) in
the header of the original image, except for the mandatory key-
words mentioned above, be copied verbatim and in the same or-
der into the header of the binary-table extension that contains
the compressed image. All these keywords will have the same
meaning and interpretation as they did in the original image,
even in cases where the keyword is not normally expected to
occur in the header of a binary-table extension (e.g., theBSCALE

andBZERO keywords, or the world-coordinate-system keywords
such asCTYPEn, CRPIXn, andCRVALn).

10.1.3. Table columns

Two columns in theFITSbinary table are defined below to con-
tain the compressed image tiles; the order of the columns in the
table is not significant. One of the table columns describes op-
tional content; but when this column appears itmustbe used as
defined in this section. The column names (given by theTTYPEn

45

keyword) are reserved; they are shown here in upper-case letters,
but case is not significant.

COMPRESSED DATA – [variable-length;required] Each row of
this columnmustcontain the byte stream that is generated
as a result of compressing the corresponding image tile. The
data type of the column (as given by theTFORMn keyword)
mustbe one of’1PB’, ’1PI’, or ’1PJ’ (or the equivalent
’1QB’, ’1QI’, or ’1QJ’), depending on whether the com-
pression algorithm generates an output stream of 8-bit bytes,
or integers of 16, or 32 bits respectively.

When using the quantization method to compress floating-
point images that is described in Sect. 10.2, it sometimes may
not be possible to quantize some of the tiles (e.g., if the range of
pixels values is too large or if most of the pixels have the same
value and hence the calculated RMS noise level in the tile is
close to zero). There also may be other rare cases where the nom-
inal compression algorithm cannot be applied to certain tiles. In
these cases, an alternate techniquemaybe used in which the raw
pixel values are losslessly compressed with the Gzip algorithm.

GZIP COMPRESSED DATA [variable-length;optional] If the raw
pixel values in an image tile are losslessly compressed with
the Gzip algorithm, the resulting byte streammustbe stored
in this column (with a’1PB’ or’1QB’ variable-length array-
column format). The correspondingCOMPRESSED DATA col-
umn for these tilesmustcontain a null pointer (i.e., the pair
of integers that constitute the descriptor for the columnmust
both have the value zero: see Sect. 7.3.5).

The compressed data columns described abovemayuse ei-
ther the’1P’ or ’1Q’ variable-length arrayFITScolumn format
if the size of the heap in the compressedFITSfile is< 2.1 GB. If
the the heap is larger than 2.1 GB, then the’1Q’ format (which
uses 64-bit pointers)mustbe used.

When using theoptional quantization method described in
Sect. 10.2 to compress floating-point images, the following
columns arerequired.

ZSCALE – [floating-point;optional] This columnshall be used
to contain linear scale factors that, along withZZERO, trans-
form the floating-point pixel values in each tile to integers
via,

I i = round
(Fi − ZZERO

ZSCALE

)

(12)

whereI i andFi are the integer and (original) floating-point
values of the image pixels, respectively, and theround func-
tion rounds the result to the nearest integer value.

ZZERO – [floating-point; optional] This columnshallbe used to
contain zero-point offsets that are used to scale the floating-
point pixel values in each tile to integers via Eq. 12.

Do not confuse theZSCALE and ZZERO columns with the
BSCALE andBZERO keywords (defined in Sect. 4.4.2) that may be
present in integerFITS images. Any such integer imagesshould
normally be compressed without any further scaling, and the
BSCALE andBZERO keywordsshouldbe copied verbatim into
the header of the binary table containing the compressed image.

Some images contain undefined pixel values; in uncom-
pressed floating-point images these pixels have an IEEE NaN

value. However, these pixel values will be altered when using
the quantization method described in Sect. 10.2 to compress
floating-point images. The value of the undefined pixelsmaybe
preserved in the following way.

ZBLANK – [integer;optional] When present, this columnshall
be used to store the integer value that represents undefined
pixels in the scaled integer array. Therecommendedvalue
for ZBLANK is −2147483648, the largest negative 32-bit in-
teger. If the same null value is used in every tile of the im-
age, thenZBLANK maybe given in a header keyword instead
of a table column; if both a keyword and a table column
namedZBLANK are present, the values in the table column
mustbe used. If there are no undefined pixels in the image
thenZBLANK is not requiredto be present either as a table
column or a keyword.

If the uncompressed image has an integer data type
(ZBITPIX > 0) then the value of undefined pixels is given by the
BLANK keyword (see Sect. 5.3), whichshouldbe used instead of
ZBLANK.

When using some compression techniques that do not ex-
actly preserve integer pixel values, it may be necessary to store
the location of the undefined pixels prior to compressing theim-
age. The locationsmaybe stored in an image mask, whichmust
itself be compressed and stored in a table column with the fol-
lowing definition. See Sect. 10.2.2 for more details.

NULL PIXEL MASK – [integer array;optional] When present,
this columnshall be used to store, in compressed form, an
image mask with the same original dimensions as the un-
compressed image, that records the location of the undefined
pixels. The process defined in Sect. 10.2.2shall be used to
construct the compressed pixel mask.

Additional columnsmay be present in the table to supply
other parameters that relate to each image tile. However, these
parametersshould notbe recorded in the image HDU when the
uncompressed image is restored.

10.2. Quantization of floating-point data

While floating-point format images may be losslessly com-
pressed, noisy images often do not compress very well. Higher
compression can only be achieved by removing some of this
noise without losing the useful information content. One com-
monly used technique for reducing the noise is to scale the
floating-point values into quantized integers using Eq. 12,and
using theZSCALE andZZERO columns to record the two scal-
ing coefficients that are used for each tile. Note that the absence
of these two columns in a tile-compressed floating-point image
is an indication that the image was not scaled, and was instead
losslessly compressed.

An effective scaling algorithm for preserving a speci-
fied amount of noise in each pixel value is described by
White & Greenfield (1999) and by Pence et al. (2009). With this
method, theZSCALE value (which is numerically equal to the
spacing between adjacent quantization levels) is calculated to be
some fraction,Q, of the RMS noise as measured in background
regions of the image. Pence et al. (2009) shows that the num-
ber of binary bits of noise that are preserved in each pixel value
is given by log2(Q) + 1.792. TheQ value directly affects the

46

compressed file size: decreasingQ by a factor of two will de-
crease the file size by about one bit per pixel. In order to achieve
the greatest amount of compression, one should use the smallest
value ofQ that still preserves the required amount of photomet-
ric and astrometric precision in the image.

A potential problem when applying this scaling method to
astronomical images, in particular, is that it can lead to a system-
atic bias in the measured intensities in faint parts of the image.
As the image is quantized more coarsely, the measured intensity
of the background regions of the sky will tend to be biased to-
wards the nearest quantize level. One very effective technique
for minimizing this potential bias is todither the quantized pixel
values by introducing random noise during the quantizationpro-
cess. So instead of simply scaling every pixel value in the same
way using Eq. 12, the quantized levels are randomized by using
this slightly modified equation:

I i = round
(Fi − ZZERO

ZSCALE
+ Ri − 0.5

)

(13)

whereRi is a random number between 0.0 and 1.0, and 0.5 is
subtracted so that the mean quantity equals 0. Then restoring the
floating-point value, the sameRi is used with the inverse for-
mula:

Fi = ((I i − Ri + 0.5) ∗ ZSCALE) + ZZERO. (14)

This “subtractive dithering” technique has the effect of dithering
the zero point of the quantization grid on a pixel-by-pixel basis
without adding any actual noise to the image. The net effect of
this is that the mean (and median) pixel value in faint regions
of the image more closely approximate the value in the origi-
nal unquantized image than if all the pixels are scaled without
dithering.

The key requirement when using this subtractive-dithering
technique is thatthe exact same random-number sequence must
be used when quantizing the pixel values to integers, and when
restoring them to floating-point values. While most computer
languages supply a function for generating random numbers,
these functions are not guaranteed to generate the same sequence
of numbers every time. An algorithm for generating a repeatable
sequence of pseudo-random numbers is given in Appendix I; this
algorithmmustbe used when applying a subtractive dither.

10.2.1. Dithering algorithms

The ZQUANTIZ keyword, if present,musthave one of the fol-
lowing values to indicate the type of quantization, if any, that
was applied to the floating-point image for compression.

’NO DITHER’ – No dithering was performed; the floating-point
pixels were simply quantized using Eq. 12. This optionshall
be assumed if theZQUANTIZ keyword is not present in the
header of the compressed floating-point image.

’SUBTRACTIVE DITHER 1’ – The basic subtractive dithering
was performed, the algorithm for which is described below.
Note that an image quantized using this technique can still
be unquantized using the simple linear scaling function given
by Eq. 12, at the cost of introducing slightly more noise in the
image than if the full subtractive-dithering algorithm were
applied.

’SUBTRACTIVE DITHER 2’ – This dithering algorithm is iden-
tical to that for’SUBTRACTIVE DITHER 1’, except that any

pixels in the floating-point image that are exactly equal to
0.0 are represented by the reserved value−2147483647 in
the quantized integer array. When the image is subsequently
decompressed and unscaled, these pixelsmustbe restored to
their original value of 0.0. This dithering option is usefulif
the zero-valued pixels have special significance to the data
analysis software, so that the value of these pixelsmust not
be dithered.

The process for generating a subtractive dither for a floating-
point image is the following.

1. Generate a sequence of 10000 single-precision floating-point
random numbers, RN, with a value between 0.0 and 1.0.
Since it could be computationally expensive to generate a
unique random number for every pixel of large images, sim-
ply cycle through this look-up table of random numbers.

2. Choose an integer in the range 1 to 10000 to serve as an
initial seed value for creating a unique sequence of random
numbers from the array that was calculated in the previous
step. The purpose of this is to reduce the chances of apply-
ing the same dithering pattern to two images that are sub-
sequently subtracted from each other (or co-added), because
the benefits of randomized dithering are lost if all the pixels
are dithered in phase with each other. The exact method for
computing this seed integer is not important as long as the
value is chosen more or less randomly.

3. Write the integer seed value that was selected in the previous
step as the value of theZDITHER0 keyword in the header of
the compressed image. This value is required to recompute
the same dithering pattern when decompressing the image.

4. Before quantizing each tile of the floating-point image, cal-
culate an initial value for two offset parameters,I0 and I1,
with the following formulae:

I0 = mod(Ntile − 1+ ZDITHER0, 10000) (15)

I1 = INT(RN(I0) ∗ 500.) (16)

whereNtile is the row number in the binary table that is used
to store the compressed bytes for that tile,ZDITHER0 is that
value of that keyword, and RN(I0) is the value of theI th

0 ran-
dom number in the sequence that was computed in the first
step. Note thatI0 has a value in the range 0 to 9999 andI1
has a value in the range 0 to 499. This method for computing
I0 andI1 was chosen so that a different sequence of random
numbers is used to compress successive tiles in the image,
and so that the sequence ofI1 values has a length of order
100-million elements before repeating.

5. Now quantize each floating-point pixel in the tile using
Eq. 13 and using random number RN(I1) for the first pixel.
Increment the value ofI1 for each subsequent pixel in the
tile. If I1 reaches the upper limit of 500, then increment the
value ofI0 and recomputeI1 from Eq. 16. IfI0 also reaches
the upper limit of 10000, then resetI0 to 0.
If the floating-point pixel has an IEEE NaN value, then it is
not quantized or dithered but instead is set to the reserved
integer value specified by theZBLANK keyword. For consis-
tency, the value ofI1 shouldalso be incremented in this case
even though it is not used.

6. Compress the array of quantized integers using the lossless
algorithm that is specified by theZCMPTYPE keyword (use
’RICE 1’ by default).

47

7. Write the compressed byte stream into the
COMPRESSED DATA column in the appropriate row of
the binary table corresponding to that tile.

8. Write the linear scaling and zero-point values that were used
in Eq. 13 for that tile into theZSCALE andZZERO columns,
respectively, in the same row of the binary table.

9. Repeat Steps 4 through 8 for each tile of the image.

10.2.2. Preserving undefined pixels with lossy compression

The undefined pixels in integer images are flagged by a reserved
BLANK value and will be preserved if a lossless compression al-
gorithm is used. (ZBLANK is used for undefined pixels in floating-
point images.) If the image is compressed with a lossy algorithm,
then some other techniquemustbe used to identify the undefined
pixels in the image. In this case it isrecommendedthat the un-
defined pixels be recorded with the following procedure.

1. Create an integer data mask with the same dimensions as the
image tile.

2. For each undefined pixel in the image, set the corresponding
mask pixels to 1 and all the other pixels to 0.

3. Compress the mask array using a lossless algorithm such as
PLIO or Gzip, and record the name of that algorithm with
the keywordZMASKCMP.

4. Store the compressed byte stream in a variable-length-array
column calledNULL PIXEL MASK in the table row corre-
sponding to that image tile.

The data mask array pixelsshouldhave the shortest integer
data type that is supported by the compression algorithm (i.e.,
usually eight-bit bytes). When decompressing the image tile, the
softwaremustcheck if the corresponding compressed data mask
exists with a length greater than 0, and if so, decompress the
mask and set the corresponding undefined pixels in the image
array to the value given by theBLANK keyword.

10.3. Tiled table compression

The following section describes the process for compressing
the content ofBINTABLE columns. Some additional details of
BINTABLE compression may be found in Pence et al. (2013), but
the specifications in this Standardshall supersede those in the
registered convention. The uncompressed tablemay be subdi-
vided into tiles, each containing a subset of rows, then eachcol-
umn of data within each tile is extracted, compressed, and stored
as a variable-length array of bytes in the output compressedta-
ble. The header keywords from the uncompressed table, with
only a few limited exceptions,shall be copied verbatim to the
header of the compressed table. The compressed tablemustit-
self be a validFITSbinary table (albeit one where the contents
cannot be interpreted without decompressing the contents)that
contains the same number and order of columns as in the uncom-
pressed table, and that contains one row for each tile of rowsin
the uncompressed table. Only the compression algorithms spec-
ified in Sect. 10.3.5 are permitted.

10.3.1. Required keywords

With only a few exceptions noted below, all the keywords and
corresponding comment fields from the uncompressed table
mustbe copied verbatim, in order, into the header of the com-

pressed table. Note in particular that the values of the reserved
column descriptor keywordsTTYPEn, TUNITn, TSCALn, TZEROn,
TNULLn, TDISPn, andTDIMn, as well as all the column-specific
WCS keywords defined in theFITS Standard,must have the
same values and data types in both the original and in the com-
pressed table, with the understanding that these keywords apply
to the uncompressed data values.

The only keywords thatmust notbe copied verbatim from
the uncompressed table header to the compressed table header
are the mandatoryNAXIS1, NAXIS2, PCOUNT, andTFORMn key-
words, and the optionalCHECKSUM, DATASUM (see Sect. 4.4.2.7),
andTHEAP keywords. These keywords must necessarily describe
the contents and structure of the compressed table itself. The
original values of these keywords in the uncompressed table
mustbe stored in a new set of reserved keywords in the com-
pressed table header. Note that there is no need to preserve a
copy of theGCOUNT keyword because the value is always equal
to 1 for BINTABLE extensions. The complete set of keywords
that have a reserved meaning within a tile-compressed binary
table are given below.

ZTABLE – [logical; value:T] The value field of this keyword
shall be T to indicate that theFITS binary-table extension
contains a compressedBINTABLE, and that logically this ex-
tensionshouldbe interpreted as a tile-compressed binary ta-
ble.

ZNAXIS1 – [integer; default: none] The value field of this key-
word shall contain an integer that gives the value of the
NAXIS1 keyword in the original uncompressedFITS table
header. This represents the width in bytes of each row in the
uncompressed table.

ZNAXIS2 – [integer; default: none] The value field of this key-
word shall contain an integer that gives the value of the
NAXIS2 keyword in the original uncompressedFITS table
header. This represents the number of rows in the uncom-
pressed table.

ZPCOUNT – [integer; default: none] The value field of this key-
word shall contain an integer that gives the value of the
PCOUNT keyword in the original uncompressedFITS table
header.

ZFORMn – [string; indexed; default: none] The value field of
these keywordsshall contain the character-string values of
the correspondingTFORMn keywords that defines the data
type of Columnn in the original uncompressedFITS table.

ZCTYPn – [string; indexed; default: none] The value field
of these keywordsshall contain the character-string value
mnemonic name of the algorithm that was used to compress
Columnn of the table. The only permitted values are given in
Sect. 10.3.5, and the corresponding algorithms are described
in Sect. 10.4.

ZTILELEN – [integer; default: none] The value field of this key-
word shall contain an integer representing the number of
rows of data from the original binary table that are contained
in each tile of the compressed table. The number of rows
in the last tile may be fewer than in the previous tiles. Note
that if the entire table is compressed as a single tile, then
the compressed table will only contains a single row, and the
ZTILELEN andZNAXIS2 keywords will have the same value.

48

10.3.2. Procedure for table compression

The procedure for compressing aFITS binary table consists of
the following sequence of steps.

1. Divide table into tiles (optional)
In order to limit the amount of data that must be managed at
one time, largeFITS tablesmaybe divided into tiles, each
containing the same number of rows (except for the last tile,
whichmaycontain fewer rows). Each tile of the table is com-
pressed in order, and each is stored in a single row in the out-
put compressed table. There is no fixed upper limit on the al-
lowed tile size, but for practical purposes it isrecommended
that it not exceed 100 MB.

2. Decompose each tile into the component columns
FITS binary tables are physically stored in row-by-row se-
quential order, such that the data values for the first row in
each column are followed by the values in the second row,
and so on (see Sect. 7.3.3). Because adjacent columns in
binary tables can contain very non-homogeneous types of
data, it can be challenging to efficiently compress the native
stream of bytes in theFITStables. For this reason, the table is
first decomposed into its component columns, and then each
column of data is compressed separately. This also allows
one to choose the most-efficient compression algorithm for
each column.

3. Compress each column of data
Each column of datamustbe compressed with one of the
lossless compression algorithms described in Sect. 10.4. If
the table is divided into tiles, then the same compression al-
gorithmmustbe applied to a given column in every tile. In
the case of variable-length array columns (where the data
are stored in the table heap: see Sect. 7.3.5), each individual
variable-length vectormustbe compressed separately.

4. Store the compressed bytes
The compressed stream of bytes for each columnmustbe
written into the corresponding column in the output table.
The compressed tablemust have exactly the same num-
ber and order of columns as the input table, however, the
data type of the columns in the output table will all have a
variable-length byte data type, withTFORMn = ’1QB’. Each
row in the compressed table corresponds to a tile of rows in
the uncompressed table.
In the case of variable-length array columns, the array of
descriptors that point to each compressed variable-length
array, as well as the array of descriptors from the input
uncompressed table,mustalso be compressed and written
into the corresponding column in the compressed table. See
Sect. 10.3.6 for more details.

10.3.3. Compression directive keywords

The following compression-directive keywords, if presentin the
header of the table to be compressed, are reserved to provide
guidance to the compression software on how the table shouldbe
compressed. The compression softwareshouldattempt to obey
these directives, but if that is not possible the softwaremaydis-
regard them and use an appropriate alternative. These keywords
are optional, butmustbe used as specified below.

– FZTILELN – [integer] The value field of this keywordshall
contain an integer that specifies the requested number of ta-
ble rows in each tile that are to be compressed as a group.

– FZALGOR– [string] The value field of this keywordshallcon-
tain a character string giving the mnemonic name of the al-
gorithm that is requested to be used by default to compress
every column in the table. The permitted values are given in
Sect. 10.3.5.

– FZALGn – [string; indexed] The value fields of these key-
wordsshall contain a character string giving the mnemonic
name of the algorithm that is requested to compress
Columnn of the table. The current allowed values are the
same as for theFZALGOR keyword. TheFZALGn keyword
takes precedence overFZALGOR in determining which algo-
rithm to use for a particular column if both keywords are
present.

10.3.4. Other reserved keywords

The following keywords are reserved to store a verbatim copy
of the value and comment fields for specific keywords in the
original uncompressedBINTABLE. These keywords, if present,
shouldbe used to reconstruct an identical copy of the uncom-
pressedBINTABLE, andshould notappear in the compressed ta-
ble header unless the corresponding keywords were present in
the uncompressedBINTABLE.

ZTHEAP – [integer; default: none] The value field of this key-
word shall contain an integer that gives the value of the
THEAP keyword if present in the original uncompressedFITS
table header.

ZHECKSUM – [string; default: none] The value field of this key-
word shall contain a character string that gives the value of
theCHECKSUM keyword (see Sect. 4.4.2.7) in the original un-
compressedFITSHDU.

ZDATASUM – [string; default: none] The value field of this key-
word shall contain a character string that gives the value of
theDATASUM keyword (see Sect. 4.4.2.7) in the original un-
compressedFITSHDU.

10.3.5. Supported compression algorithms for tables

The permitted algorithms for compressingBINTABLE columns
are’RICE 1’, ’GZIP 1’, and’GZIP 2’ (plus’NOCOMPRESS’),
which are lossless and are described in Sect. 10.4. Lossy com-
pression could be allowed in the future once a process is defined
to preserve the details of the compression.

10.3.6. Compressing variable-length array columns

Compression ofBINTABLE tiles that contain variable-length ar-
ray (VLA) columns requires special consideration because the
array values in these columns are not stored directly in the ta-
ble, but are instead stored in a data heap, which follows the main
table (see Sect. 7.3.5). The VLA column in the original, uncom-
pressed table only contains descriptors, which comprise two in-
tegers that give the size and location of the arrays in the heap.
When decompressing, these descriptor values will be neededto
write the decompressed VLAs back into the same location in the
heap as in the original uncompressed table. Thus, the following

49

processmustbe followed, in order, when compressing a VLA
column within a tile. Refer to Pence et al. (2013) for additional
details.

1. For each VLA in the column:
– read the array from the input table, and compress it using

the algorithm specified byZCTYP for this VLA column;
– write the resulting byte stream to the heap of the com-

pressed table; and
– store (or append) the descriptors to the compressed byte

stream (whichmustbe 64-bit Q-type) in a temporary ar-
ray.

2. Append the VLA descriptors from the uncompressed table
(which maybe either Q-type or P-type) to the temporary ar-
ray of VLA descriptors for the compressed table.

3. Compress the combined array of descriptors using
’GZIP 1’, and write that byte stream into the corre-
sponding VLA column in the output table, so that the
compressed array is appended to the heap.

When decompressing a VLA column, two stages of decom-
pressionmustbe performed in order.

1. Decompress the combined array of descriptors using the
Gzip algorithm.

2. For each descriptor to a compressed array:
– read the compressed VLA from the compressed ta-

ble, and decompress it using the algorithm specified by
ZCTYP for this VLA column; and

– write it to the correct location in the decompressed table.

10.4. Compression algorithms

Table 36: Valid mnemonic values for theZCMPTYPE andZCTYPn
keywords

Value Sect. Compression Type

’RICE 1’ 10.4.1 Rice algorithm for integer data
’GZIP 1’ 10.4.2 Combination of the LZ77 algorithm

and Huffman coding, used in GNU
Gzip

’GZIP 2’ 10.4.2 Like ’GZIP 1’, but with reshuffled
byte values

’PLIO 1’ 10.4.3 IRAF PLIO algorithm for integer data
’HCOMPRESS 1’ 10.4.4 H-compress algorithm for two-

dimensional images
’NOCOMPRESS’ The HDU remains uncompressed

The name of the permitted algorithms for compressingFITS
HDUs, as recorded in theZCMPTYPE keyword, are listed in
Table 36; if other types are later supported, theymust be
registered with the IAUFWG to reserve the keyword values.
Keywords for the parameters of supported compression algo-
rithms have also been reserved, and are described with each
algorithm in the subsections below. If alternative compression
algorithms require keywords beyond those defined below, they
mustalso be registered with the IAUFWG to reserve the associ-
ated keyword names.

10.4.1. Rice compression

When ZCMPTYPE = ’RICE 1’, the Rice algorithm (Rice et al.
1993) shall be used for data (de)compression. When selected,
the keywords in Table 37shouldalso appear in the header with
one of the values indicated. If these keywords are absent, then
their default valuesmustbe used. The Rice algorithm is loss-
less, but can only be applied to integer-valued arrays. It offers
a significant performance advantage over the other compression
techniques (see White et al. 2013).

Table 37: Keyword parameters for Rice compression

Values
Keyword Permitted Default Meaning

ZNAME1 ’BLOCKSIZE’ − Size of block in pixels
ZVAL1 16, 32 32 No. of pixels in a block
ZNAME2 ’BYTEPIX’ − Size of pixel value in bytes
ZVAL2 1, 2, 4, 8 4 No. of eight-bit bytes per orig-

inal pixel value

10.4.2. Gzip compression

WhenZCMPTYPE = ’GZIP 1’, the Gzip algorithmshall be used
for data (de)compression. There are no algorithm parameters,
so the keywordsZNAMEn and ZVALn should notappear in the
header. The Gzip algorithm is used in the free GNU software
compression utility of the same name. It was created by J.-
L. Gailly and M. Adler, based on the DEFLATE algorithm
(Deutsch 1996), which is a combination of LZ77 (Ziv & Lempel
1977) and Huffman coding. The Unixgzip program accepts an
integer parameter that provides a trade between optimization for
speed (1) and compression ratio (9), which does not affect the
format of the resultant data stream. The selection of this pa-
rameter is an implementation detail that is not covered by this
Standard.

WhenZCMPTYPE = ’GZIP 2’, the gzip2 algorithmshall be
used for data (de)compression. The gzip2 algorithm is a vari-
ation on’GZIP 1’. There are no algorithm parameters, so the
keywordsZNAMEn andZVALn should notappear in the header.
In this case the bytes in the array of data values are shuffled so
that they are arranged in order of decreasing significance before
being compressed. For example, a five-element contiguous array
of two-byte (16-bit) integer values, with an original big-endian
byte order of:

A1A2B1B2C1C2D1D2E1E2

will have the following byte order after shuffling:

A1B1C1D1E1A2B2C2D2E2,

whereA1, B1,C1,D1, andE1 are the most-significant bytes from
each of the integer values. Byte shufflingshall onlybe performed
for integer or floating-point numeric data types; logical, bit, and
character typesmust notbe shuffled.

10.4.3. IRAF/PLIO compression

WhenZCMPTYPE = ’PLIO 1’. the IRAF PLIO algorithmshall
be used for data (de)compression. There are no algorithm param-
eters, so the keywordsZNAMEn andZVALn should notappear in

50

the header. The PLIO algorithm was developed to store integer-
valued image masks in a compressed form. The compression al-
gorithm used is based on run-length encoding, with the ability
to dynamically follow level changes in the image, in principle
allowing a 16-bit encoding to be used regardless of the image
depth. However, this algorithm has only been implemented ina
way that supports image depths of no more than 12 bits; there-
fore ’PLIO 1’ must onlybe used for integer image types with
values between 0 and 224.

The compressed line lists are stored as variable-length arrays
of type short integer (16 bits per list element), regardlessof the
mask depth. A line list consists of a series of simple instructions,
which are executed in sequence to reconstruct a line of the mask.
Each 16-bit instruction consists of the sign bit (not used),a three-
bit opcode, and twelve bits of data, as depicted below.

+--+--------+-------------------+

|16|15 13|12 1|

+--+--------+-------------------+

| | opcode | data |

+--+----------------------------+

The significance of the data depends upon the instruction.
In order to reconstruct a mask line, the application executing
these instructions isrequired to keep track of two values, the
current high value and the current position in the output line.
The detailed operation of each instruction is given in Table38.

Table 38: PLIO Instructions

Instr. Opcode Meaning

’ZN’ ’00’ Zero the nextN output pixels.
’HN’ ’04’ Set the nextN output pixels to the current

high value.
’PN’ ’05’ Zero the nextN − 1 output pixels, and set

Pixel N to the current high value.
’SH’ ’05’ Set the high value (absolute rather than in-

cremental), taking the high 15 bits from the
next word in the instruction stream, and the
low 12 bits from the current data value.

’IH,DH’ ’02,03’ Increment (’IH’) or decrement (’DH’) the
current high value by the data value. The
current position is not affected.

’IS,DS’ ’06,07’ Increment (’IS’) or decrement (’DS’) the
current high value by the data value, and
step, i.e., output one high value.

The high valuemustbe set to 1 at the beginning of a line,
hence the’IH,DH’ and’IS,DS’ instructions are not normally
needed for Boolean masks.

10.4.4. H-Compress algorithm

WhenZCMPTYPE = ’HCOMPRESS 1’, the H-compress algorithm
shall be used for data (de)compression. The algorithm was de-
scribed by White (1992), and can be applied only to images with
two dimensions. Briefly, the compression method is to apply,in
order:

1. a wavelet transform called the H-transform (a Haar trans-
form generalized to two dimensions), followed by

2. a quantization that discards noise in the image while retain-
ing the signal on all scales, and finally

3. a quadtree coding of the quantized coefficients.

The H-transform is a two-dimensional generalization of the
Haar transform. The H-transform is calculated for an image of
size 2N × 2N as follows.

1. Divide the image up into blocks of 2× 2 pixels. Call the four
pixel values in a blocka00, a10, a01, anda11.

2. For each block compute four coefficients:
h0 = (a11+ a10 + a01+ a00)/(SCALE ∗ σ)
hx = (a11+ a10− a01− a00)/(SCALE ∗ σ)
hy = (a11− a10+ a01 − a00)/(SCALE ∗ σ)
hc = (a11− a10− a01 + a00)/(SCALE ∗ σ)
whereSCALE is an algorithm parameter defined below, and
σ characterizes the RMS noise in the uncompressed image.

3. Construct a 2N−1 × 2N−1 image from theh0 values for each
2×2 block. Divide that image up into 2×2 blocks and repeat
the above calculation. Repeat this processN times, reducing
the image in size by a factor of two at each step, until only
oneh0 value remains.

This calculation can be easily inverted to recover the original im-
age from its transform. The transform is exactly reversibleusing
integer arithmetic. Consequently, the program can be used for
either lossy or lossless compression, with no special approach
needed for the lossless case.

Noise in the original image is still present in the H-transform,
however. To compress noisy images, each coefficient can be di-
vided bySCALE ∗ σ, whereSCALE ∼ 1 is chosen according to
how much loss is acceptable. This reduces the noise in the trans-
form to 0.5/SCALE, so that large portions of the transform are
zero (or nearly zero) and the transform is highly compressible.

There is one user-defined parameter associated with the H-
Compress algorithm: a scale factor to the RMS noise in the
image that determines the amount of compression that can be
achieved. It is not necessary to know what scale factor was used
when compressing the image in order to decompress it, but it
is still useful to record it. The keywords in Table 39shouldbe
recorded in the header for this purpose.

Table 39: Keyword parameters for H-compression

Values
Keyword Permitted Default Meaning

ZNAME1 ’SCALE’ ’-’ Scale factor
ZVAL1 0.0 or larger 0.0 Scaling of the RMS noise; 0.0

yields lossless compression

Scale Factor– The floating-point scale parameter (whose value
is stored in KeywordZVAL1) determines the amount of com-
pression; higher values result in higher compression, but
with greater loss of information.SCALE = 0.0 is a special
case that yields lossless compression, i.e. the decompressed
image has exactly the same pixel values as the original im-
age.SCALE > 0.0 leads to lossy compression, whereSCALE

determines how much of the noise is discarded.

51

Appendix A: Syntax of keyword records

This appendix is not part of the FITS Standard but is included
for convenient reference.

:= means ‘is defined to be’
X | Y means one ofX or Y

(no ordering relation is implied)
[X] means thatX is optional
X... meansX is repeated one or more times
‘B’ means the ASCII character B
‘A’–‘Z’ means one of the ASCII characters A

through Z in the ASCII collating
sequence, as shown in Appendix D

\0xnn means the ASCII character associated
with the hexadecimal code nn

{...} expresses a constraint or a comment
(it immediately follows the syntax rule)

The following statements define the formal syntax used in
FITS free-format keyword records, as well as for long-string
keywords spanning more than one keyword record).

FITS keyword :=
single recordkeyword|
long string keyword

single recordkeyword :=
FITS keywordrecord

FITS keywordrecord :=
FITS commentarykeywordrecord|
FITS valuekeywordrecord

FITS commentarykeywordrecord :=
COMMENT keyword [asciitext char...]|
HISTORY keyword [asciitext char...]|
BLANKFIELD keyword [asciitext char...]|
keywordfield anycharbut equal

[ascii text char...]|
keywordfield ‘=’ anycharbut space

[ascii text char...]
{Constraint: The total number of characters in a
FITS commentarykeywordrecord must be exactly equal
to 80.}

FITS valuekeywordrecord :=
keywordfield valueindicator [space...] [value]

[space...] [comment]
{Constraint: The total number of characters in a
FITS valuekeywordrecordmustbe exactly equal to 80.}
{Comment: If the value field is not present, the value of theFITS
keyword is not defined.}

long string keyword :=
initial kwd record [continuationkwd record...]
last continuationrecord

{Comment: the value of a longstring keyword is recon-
structed by concatenating the partialstring values of the
initial kwd record and of any continuationkwd records in
the order they occur, and the characterstring value of the

last continuationrecord.}

initial kwd record :=
keywordfield valueindicator [space...]
[partial string value] [space...] [comment]

{Constraint: The total number of characters in an ini-
tial kwd recordmustbe exactly equal to 80.}

continuationkwd record :=
CONTINUE keyword [space...]
[partial string value] [space...] [comment]

{Constraint: The total number of characters in a continua-
tion kwd recordmustbe exactly equal to 80.}

last continuationrecord :=
CONTINUE keyword [space...]
[characterstring value] [space...] [comment]

{Constraint: The total number of characters in a
last continuationrecordmustbe exactly equal to 80.}

keywordfield :=
[keyword char...] [space...]

{Constraint: The total number of characters in the keywordfield
mustbe exactly equal to 8.}

keywordchar :=
‘A’–‘Z’ | ‘0’–‘9’ | ‘ ’ | ‘-’

COMMENT keyword :=
‘C’ ‘O’ ‘M’ ‘M’ ‘E’ ‘N’ ‘T’ space

HISTORY keyword :=
‘H’ ‘I’ ‘S’ ‘T’ ‘O’ ‘R’ ‘Y’ space

BLANKFIELD keyword :=
space space space space space space space space

CONTINUE keyword :=
‘C’ ‘O’ ‘N’ ‘T’ ‘I’ ‘N’ ‘U’ ‘E’

value indicator :=
‘=’ space

space :=
‘ ’

comment :=
‘ /’ [ascii text char...]

ascii text char :=
space–‘̃ ’

anycharbut equal :=
space–‘<’ | ‘>’–‘ ˜’

anycharbut space :=
‘!’–‘ ˜’

value :=
characterstring value| logical value|
integervalue| floating value|

52

complexintegervalue| complexfloating value

characterstring value :=
beginquote [stringtext char...] endquote

{Constraint: The beginquote and endquote are not part of the
character-string value but only serve as delimiters. Leading
spaces are significant; trailing spaces are not.}

partial string value :=
beginquote [stringtext char...] ampersand endquote

{Constraint: The beginquote, endquote, and ampersand are not
part of the character-string value but only serve respectively as
delimiters or continuation indicator.}

beginquote :=
quote

endquote :=
quote

{Constraint: The ending quotemust notbe immediately fol-
lowed by a second quote.}

quote :=
\0x27

ampersand :=
‘&’

string text char :=
ascii text char

{Constraint: A stringtext char is identical to an asciitext char
except for the quote char; a quote char is represented by two
successive quote chars.}

logical value :=
‘T’ | ‘F’

integervalue :=
[sign] digit [digit...]

{Comment: Such an integer value is interpreted as a signed
decimal number. Itmaycontain leading zeros.}

sign :=
‘-’ | ‘+’

digit :=
‘0’–‘9’

floating value :=
decimalnumber [exponent]

decimalnumber :=
[sign] [integerpart] [‘.’ [fraction part]]

{Constraint: At least one of the integerpart and fractionpart
mustbe present.}

integerpart :=
digit | [digit...]

fraction part :=
digit | [digit...]

exponent :=
exponentletter [sign] digit [digit...]

exponentletter :=
‘E’ | ‘D’

complexintegervalue :=
‘(’ [space...] realintegerpart [space...] ‘,’ [space...]
imaginaryintegerpart [space...] ‘)’

real integerpart :=
integervalue

imaginaryintegerpart :=
integervalue

complexfloating value :=
‘(’ [space...] realfloating part [space...] ‘,’ [space...]
imaginaryfloating part [space...] ‘)’

real floating part :=
floating value

imaginaryfloating part :=
floating value

Appendix B: Suggested time-scale specification

The content of this appendix has been superseded by Sect. 9 of
the formal Standard, which derives from Rots et al. (2015).

53

Appendix C: Summary of keywords

This appendix is not part of the FITS Standard, but is included for convenient reference.
All of the mandatory and reserved keywords that are defined inthe Standard, except for the reserved WCS keywords that are

discussed separately in Sect. 8, are listed in Tables C.1, C.2, and C.3. An alphabetical list of these keywords and their definitions is
available online:http://heasarc.gsfc.nasa.gov/docs/fcg/standard_dict.html.

Table C.1: MandatoryFITSkeywords for the structures described in this document.

Primary Conforming Image ASCII-table Binary-table Compressed Compressed Random-groups
HDU extension extension extension extension images6 tables6 records

SIMPLE XTENSION XTENSION1 XTENSION2 XTENSION3 ZIMAGE =T ZTABLE =T SIMPLE

BITPIX BITPIX BITPIX BITPIX = 8 BITPIX = 8 ZBITPIX ZNAXIS1 BITPIX

NAXIS NAXIS NAXIS NAXIS = 2 NAXIS = 2 ZNAXIS ZNAXIS2 NAXIS

NAXISn4 NAXISn4 NAXISn4 NAXIS1 NAXIS1 ZNAXISn ZPCOUNT NAXIS1 = 0

END PCOUNT PCOUNT = 0 NAXIS2 NAXIS2 ZCMPTYPE ZFORMn NAXISn4

GCOUNT GCOUNT = 1 PCOUNT = 0 PCOUNT ZCTYPn GROUPS = T

END END GCOUNT = 1 GCOUNT = 1 ZTILELEN PCOUNT

TFIELDS TFIELDS GCOUNT

TFORMn5 TFORMn5 END

TBCOLn5 END

END

(1)XTENSION= 'IMAGE ' for the image extension.(2)XTENSION= 'TABLE ' for the ASCII-table extension.(3)XTENSION= 'BINTABLE' for
the binary-table extension.(4)Runs from 1 through the value ofNAXIS. (5)Runs from 1 through the value ofTFIELDS. (6)Required in addition to the
mandatory keywords for binary tables.

Table C.2: ReservedFITSkeywords for the structures described in this document.

All 1 Array2 ASCII-table Binary-table Compressed Compressed Random-groups
HDUs HDUs extension extension images tables records

DATE EXTNAME BSCALE TSCALn TSCALn ZTILEn FZTILELN PTYPEn
DATE-OBS EXTVER BZERO TZEROn TZEROn ZNAMEi FZALGOR PSCALn
ORIGIN EXTLEVEL BUNIT TNULLn TNULLn ZVALi FZALGn PZEROn
AUTHOR EQUINOX BLANK TTYPEn TTYPEn ZMASKCMP

REFERENC EPOCH3 DATAMAX TUNITn TUNITn ZQUANTIZ

COMMENT BLOCKED3 DATAMIN TDISPn TDISPn ZDITHER0

HISTORY EXTEND4 TDMAXn TDIMn ZSIMPLE ZTHEAP

 TELESCOP TDMINn THEAP ZEXTEND

OBJECT INSTRUME TLMAXn TDMAXn ZBLOCKED

OBSERVER TLMINn TDMINn ZTENSION

CONTINUE TLMAXn ZPCOUNT

INHERIT 5 TLMINn ZGCOUNT

CHECKSUM ZHECKSUM ZHECKSUM

DATASUM ZDATASUM ZDATASUM

(1)These keywords are further categorized in Table C.3.(2)Primary HDU, IMAGE extension, user-defined HDUs with same array structure.
(3)Deprecated.(4)Only permitted in the primary HDU.(5)Only permitted in extension HDUs, immediately following the mandatory keywords.

54

http://heasarc.gsfc.nasa.gov/docs/fcg/standard_dict.html

Table C.3: General reservedFITSkeywords described in this document.

Production Bibliographic Commentary Observation

DATE AUTHOR COMMENT DATE-OBS

ORIGIN REFERENC HISTORY TELESCOP

BLOCKED1 INSTRUME

OBSERVER

OBJECT

EQUINOX

EPOCH1

(1)Deprecated.

55

Table D.1: ASCII character set.

ASCII control ASCII text
dec hex char dec hex char dec hex char dec hex char

0 00 NUL 32 20 SP 64 40 @ 96 60 `

1 01 SOH 33 21 ! 65 41 A 97 61 a
2 02 STX 34 22 " 66 42 B 98 62 b
3 03 ETX 35 23 # 67 43 C 99 63 c
4 04 EOT 36 24 $ 68 44 D 100 64 d
5 05 ENQ 37 25 % 69 45 E 101 65 e
6 06 ACK 38 26 & 70 46 F 102 66 f
7 07 BEL 39 27 ' 71 47 G 103 67 g
8 08 BS 40 28 (72 48 H 104 68 h
9 09 HT 41 29) 73 49 I 105 69 i
10 0A LF 42 2A * 74 4A J 106 6A j
11 0B VT 43 2B + 75 4B K 107 6B k
12 0C FF 44 2C , 76 4C L 108 6C l
13 0D CR 45 2D - 77 4D M 109 6D m
14 0E SO 46 2E . 78 4E N 110 6E n
15 0F SI 47 2F / 79 4F O 111 6F o
16 10 DLE 48 30 0 80 50 P 112 70 p
17 11 DC1 49 31 1 81 51 Q 113 71 q
18 12 DC2 50 32 2 82 52 R 114 72 r
19 13 DC3 51 33 3 83 53 S 115 73 s
20 14 DC4 52 34 4 84 54 T 116 74 t
21 15 NAK 53 35 5 85 55 U 117 75 u
22 16 SYN 54 36 6 86 56 V 118 76 v
23 17 ETB 55 37 7 87 57 W 119 77 w
24 18 CAN 56 38 8 88 58 X 120 78 x
25 19 EM 57 39 9 89 59 Y 121 79 y
26 1A SUB 58 3A : 90 5A Z 122 7A z
27 1B ESC 59 3B ; 91 5B [123 7B {

28 1C FS 60 3C < 92 5C \ 124 7C |

29 1D GS 61 3D = 93 5D] 125 7D }

30 1E RS 62 3E > 94 5E ˆ 126 7E ˜

31 1F US 63 3F ? 95 5F _ 127 7F DEL1

1 Not ASCII Text

Appendix D: ASCII text

This appendix is not part of the FITS Standard; the material in it is based on the ANSI standard for ASCII (ANSI 1977) and is
included here for informational purposes.)

In Table D.1, the first column is the decimal and the second column the hexadecimal value for the character in the third column.
The characters hexadecimal 20 to 7E (decimal 32 to 126) constitute the subset referred to in this document as the restricted set of
ASCII-text characters.

Appendix E: IEEE floating-point formats

The material in this appendix is not part of this Standard; it is adapted from the IEEE-754 floating-point standard (IEEE 1985) and
provided for informational purposes. It is not intended to be a comprehensive description of the IEEE formats; readers should refer
to the IEEE standard.)

FITSrecognizes all IEEE basic formats, including the special values.

E.1. Basic formats

Numbers in the single and double formats are composed of the following three fields:

1. a one-bit signs,
2. a biased exponente= E + bias, and
3. a fractionf = •b1b2 · · ·bp−1.

The range of the unbiased exponentE shall include every integer between two valuesEmin andEmax, inclusive, and also two other
reserved valuesEmin− 1 to encode±0 and denormalized numbers, andEmax+1 to encode±∞ and NaNs. The foregoing parameters
are given in Table E.1. Each nonzero numerical value has justone encoding. The fields are interpreted as follows.

56

Table E.1: Summary of format parameters.

Format
Parameter Single Double

Single extended Double extended

p 24 ≥ 32 53 ≥ 64
Emax +127 ≥ +1023 +1023 ≥ +16383
Emin −126 ≤ −1022 −1022 ≤ −16382
Exponentbias +127 unspecified +1023 unspecified
Exponent width in bits 8 ≥ 11 11 ≥ 15
Format width in bits 32 ≥ 43 64 ≥ 79

Fig. E.1: Single Format.msb meansmost-significant bit, lsb meansleast-significant bit

1 8 23widths

s e f

msb lsb msb lsborder

Fig. E.2: Double Format.msb meansmost-significant bit, lsb meansleast-significant bit

1 11 52widths

s e f

msb lsb msb lsborder

E.1.1. Single

A 32-bit single-format numberX is divided as shown in Fig. E.1. The valuev of X is inferred from its constituent fields.

1. If e= 255 andf , 0, thenv is NaN regardless ofs.
2. If e= 255 andf = 0, thenv = (−1)s∞.
3. If 0 < e< 255, thenv = (−1)s2e−127(1 • f).
4. If e= 0 and f , 0, thenv = (−1)s2e−126(0 • f) (denormalized numbers).
5. If e= 0 and f = 0, thenv = (−1)s0 (zero).

E.1.2. Double

A 64-bit double-format numberX is divided as shown in Fig. E.2. The valuev of X is inferred from its constituent fields.

1. If e= 2047 andf , 0, thenv is NaN regardless ofs.
2. If e= 2047 andf = 0, thenv = (−1)s∞.
3. If 0 < e< 2047, thenv = (−1)s2e−1023(1 • f).
4. If e= 0 and f , 0, thenv = (−1)s2e−1022(0 • f) (denormalized numbers).
5. If e= 0 and f = 0, thenv = (−1)s0 (zero).

E.2. Byte patterns

Table E.2 shows the types of IEEE floating-point value, whether regular or special, corresponding to all double- and single-precision
hexadecimal byte patterns.

57

Table E.2: IEEE floating-point formats.

IEEE value Double precision Single precision

+0 0000000000000000 00000000

denormalized 0000000000000001 00000001

to to
000FFFFFFFFFFFFF 007FFFFF

positive underflow 0010000000000000 00800000

positive numbers 0010000000000001 00800001

to to
7FEFFFFFFFFFFFFE 7F7FFFFE

positive overflow 7FEFFFFFFFFFFFFF 7F7FFFFF

+∞ 7FF0000000000000 7F800000

NaN1 7FF0000000000001 7F800001

to to
7FFFFFFFFFFFFFFF 7FFFFFFF

−0 8000000000000000 80000000

negative 8000000000000001 80000001

denormalized to to
800FFFFFFFFFFFFF 807FFFFF

negative underflow 8010000000000000 80800000

negative numbers 8010000000000001 80800001

to to
FFEFFFFFFFFFFFFE FF7FFFFE

negative overflow FFEFFFFFFFFFFFFF FF7FFFFF

−∞ FFF0000000000000 FF800000

NaN1 FFF0000000000001 FF800001

to to
FFFFFFFFFFFFFFFF FFFFFFFF

1 Certain valuesmaybe designated asquietNaN (no diagnostic when used) orsignaling(produces diagnostic when used) by particular implemen-
tations.

58

Appendix F: Reserved extension type names

This appendix is not part of the FITS Standard, but is in-
cluded for informational purposes. It describes the extension
type names registered as of the date this Standard was issued.) A
current list is available from theFITSSupport Office website at
http://fits.gsfc.nasa.gov.

F.1. Standard extensions

These three extension types have been approved by the
IAUFWG and are defined in Sect. 7 of this Standard document
as well as in the indicatedAstronomy and Astrophysicsjournal
articles.

– 'IMAGE ' – This extension type provides a means of stor-
ing a multi-dimensional array similar to that of theFITSpri-
mary header and data unit. Approved as a standard extension
in 1994 (Ponz et al. 1994).

– 'TABLE ' – This ASCII-table extension type contains
rows and columns of data entries expressed as ASCII charac-
ters. Approved as a standard extension in 1988 (Harten et al.
1988).

– 'BINTABLE' – This binary-table extension type provides a
more-flexible and efficient means of storing data structures
than is provided by theTABLE extension type. The table
rows can contain a mixture of numerical, logical, and char-
acter data entries. In addition, each entry is allowed to be
a single-dimensioned array. Numeric data are kept in bi-
nary formats. Approved as a standard extension in 1994
(Cotton et al. 1995).

F.2. Conforming extensions

These conventions meet the requirements for a conforming ex-
tension as defined in in Sect. 3.4.1 of this Standard, howeverthey
have not been formally approved or endorsed by the IAUFWG.

– 'IUEIMAGE' – This name was given to the prototype of
the IMAGE extension type and was primarily used in the
IUE project data archive from approximately 1992 to 1994.
Except for the name, the format is identical to theIMAGE
extension.

– 'A3DTABLE' – This name was given to the prototype of
the BINTABLE extension type and was primarily used in
the AIPS data processing system developed at NRAO from
about 1987 until it was replaced byBINTABLE in the early
1990s. The format is defined in the ‘Going AIPS’ manual
(Cotton et al. 1990), Chapter 14. It is very similar to the
BINTABLE type except that it does not support the variable-
length-array convention.

– 'FOREIGN ' – This extension type is used to put aFITS
wrapper about an arbitrary file, allowing a file or tree of files
to be wrapped up inFITS and later restored to disk. A full
description of this extension type is given in the Registry of
FITSconventions on theFITSSupport Office website.

– 'DUMP ' – This extension type can be used to store a
stream of binary-data values. The only known use of this ex-
tension type is to record telemetry header packets for data
from the Hinode mission. The more-generalFOREIGN exten-
sion type could also be used to store this type of data.

F.3. Other suggested extension names

There have been occasional suggestions for other extension
names that might be used for other specific purposes. These in-
clude aCOMPRESS extension for storing compressed images, a
FITS extension for hierarchically embedding entireFITS files
within other FITS files, and aFILEMARK extension for repre-
senting the equivalent of an end-of-file mark on magnetic-tape
media. None of these extension types have been implemented or
used in practice, therefore these names are not reserved. These
extension names (or any other extension name not specifically
mentioned in the previous sections of this appendix)should not
be used in anyFITS file without first registering the name with
the IAU FITSWorking Group.

Appendix G: MIME types

This appendix is not part of the FITS Standard, but is included
for informational purposes.

RFC 4047 (Allen & Wells 2005) describes the registration
of the Multipurpose Internet Mail Extensions (MIME) sub-types
‘application/fits’ and ‘image/fits’ to be used by the in-
ternational astronomical community for the interchange ofFITS
files. The MIME type serves as a electronic tag or label that is
transmitted along with theFITS file that tells the receiving ap-
plication what type of file is being transmitted. The remainder of
this appendix has been extracted verbatim from the RFC 4047
document.

The general nature of the fullFITS Standard requires the
use of the media type ‘application/fits’. Nevertheless, the
principal intent for a great manyFITS files is to convey a sin-
gle data array in the primary HDU, and such arrays are very
often two-dimensional images. Several common image view-
ing applications already display single-HDUFITSfiles, and the
prototypes for virtual-observatory projects specify thatdata pro-
vided by web services be conveyed by the data array in the pri-
mary HDU. These uses justify the registration of a second me-
dia type, namely ‘image/fits’, for files that use the subset of
the Standard described by the originalFITSStandard paper. The
MIME type ‘image/fits’ maybe used to describeFITS pri-
mary HDUs that have other than two dimensions, however it is
expected that most files described as ‘image/fits’ will have
two-dimensional (NAXIS = 2) primary HDUs.

G.1. MIME type ‘application/fits’

A FITS file described with the media type
‘application/fits’ should conform to the published
standards forFITS files as determined by convention and
agreement within the internationalFITS community. No other
constraints are placed on the content of a file described as
‘application/fits’.

A FITS file described with the media type
‘application/fits’ may have an arbitrary number of
conforming extension HDUs that follow its mandatory primary
header and data unit. The extension HDUsmaybe one of the
standard types (IMAGE, TABLE, and BINTABLE) or any other
type that satisfies the ‘Requirements for conforming extensions’
(Sect. 3.4.1). The primary HDU or anyIMAGE extensionmay
contain zero to 999 dimensions with zero-or-more pixels along
each dimension.

59

http://fits.gsfc.nasa.gov

The primary HDUmayuse the random-groups convention,
in which the dimension of the first axis is zero and the keywords
GROUPS. PCOUNT andGCOUNT appear in the header.NAXIS1 = 0
andGROUPS = T is the signature of random groups; see Sect. 6.

G.1.1. Recommendations for application writers

An application intended to handle ‘application/fits’ should
be able to provide a user with a manifest of all of the HDUs that
are present in the file and with all of the keyword/value pairs
from each of the HDUs.

An application intended to handle ‘application/fits’
shouldbe prepared to encounter extension HDUs that contain
either ASCII or binary tables, and to provide a user with access
to their elements.

An application that can modifyFITS files or retrieveFITS
files from an external serviceshouldbe capable of writing such
files to a local storage medium.

Complete interpretation of the meaning and intended use of
the data in each of the HDUs typically requires the use of heuris-
tics that attempt to ascertain which local conventions wereused
by the author of theFITSfile.

As examples, files with media type ‘application/fits’
might contain any of the following contents.

– An empty primary HDU (containing zero data elements) fol-
lowed by a table HDU that contains a catalog of celestial
objects.

– An empty primary HDU followed by aTABLE HDU that en-
codes a series of time-tagged photon events from an expo-
sure using an X-ray detector.

– An empty primary HDU followed by a series ofIMAGE
HDUs containing data from an exposure taken by a mosaic
of CCD detectors.

– An empty primary HDU followed by a series ofTABLE
HDUs that contain a snapshot of the state of a relational
database.

– A primary HDU containing a single image along with key-
word/value pairs of metadata.

– A primary HDU withNAXIS1 = 0 andGROUPS = T followed
by random-groups data records of complex fringe visibili-
ties.

G.2. MIME type ‘image/fits’

A FITSfile described with the media type ‘image/fits’ should
have a primary HDU with positive integer values for theNAXIS

andNAXISn keywords, and henceshouldcontain at least one
pixel. Files with four or more non-degenerate axes (NAXISn
> 1) should be described as ‘application/fits’, not as
‘image/fits’. (In rare cases it may be appropriate to describe
a NULL image – a dataless container forFITS keywords, with
NAXIS = 0 or NAXISn= 0 – or an image with four or more non-
degenerate axes as ‘image/fits’ but this usage is discouraged
because such files may confuse simple image-viewer applica-
tions.)

FITS files declared as ‘image/fits’ may also have one
or more conforming extension HDUs following their primary
HDUs. These extension HDUsmaycontain standard, non-linear,
world-coordinate system (WCS) information in the form of ta-
bles or images. The extension HDUsmay also contain other,

non-standard metadata pertaining to the image in the primary
HDU in the forms of keywords and tables.

A FITS file described with the media type ‘image/fits’
shouldbe principally intended to communicate the single data
array in the primary HDU. This means that ‘image/fits’
should notbe applied toFITS files containing multi-exposure-
frame mosaic images. Also, random-groups filesmustbe de-
scribed as ‘application/fits’ and not as ‘image/fits’.

A FITS file described with the media type ‘image/fits’
is also valid as a file of media type ‘application/fits’. The
choice of classification depends on the context and intendedus-
age.

G.2.1. Recommendations for application writers

An application that is intended to handle ‘image/fits’ should
be able to provide a user with a manifest of all of the HDUs that
are present in the file and with all of the keyword/value pairs
from each of the HDUs. An application writermay choose to
ignore HDUs beyond the primary HDU, but even in this case
the applicationshouldbe able to present the user with the key-
word/value pairs from the primary HDU.

Note that an application intended to render ‘image/fits’
for viewing by a user has significantly more responsibility
than an application intended to handle, e.g.,’image/tiff’ or
’image/gif’. FITSdata arrays contain elements that typically
represent the values of a physical quantity at some coordinate
location. Consequently they need not contain any pixel render-
ing information in the form of transfer functions, and thereis
no mechanism for color look-up tables. An applicationshould
provide this functionality, either statically using a more- or less-
sophisticated algorithm, or interactively allowing a uservarious
degrees of choice.

Furthermore, the elements in aFITS data arraymaybe in-
tegers or floating-point numbers. The dynamic range of the
data-array values may exceed that of the display medium and
the eye, and their distribution may be highly non-uniform.
Logarithmic, square-root, and quadratic transfer functions along
with histogram-equalization techniques have proved helpful
for rendering FITS data arrays. Some elements of the ar-
ray may have values that indicate that their data are unde-
fined or invalid; theseshouldbe rendered distinctly. Via WCS
Paper I (Greisen & Calabretta 2002) the Standard permits
CTYPEn = ’COMPLEX’ to assert that a data array contains com-
plex numbers (future revisions might admit other elements such
as quaternions or general tensors).

Three-dimensional data arrays (NAXIS = 3 with NAXIS1,
NAXIS2, and NAXIS3 all greater than 1) are of special inter-
est. Applications intended to handle ‘image/fits’ maydefault
to displaying the first two-dimensional plane of such an image
cube, or theymaydefault to presenting such an image in a fash-
ion akin to that used for an animated GIF, or theymaypresent
the data cube as a mosaic of ‘thumbnail’ images. The time-lapse
movie-looping display technique can be effective in many in-
stances, and application writersshouldconsider offering it for
all three-dimensional arrays.

An ‘image/fits’ primary HDU with NAXIS = 1 is describ-
ing a one-dimensional entity such as a spectrum or a time series.
Applications intended to handle ‘image/fits’ maydefault to
displaying such an image as a graphical plot rather than as a
two-dimensional picture with a single row.

60

An application that cannot handle an image with dimension-
ality other than twoshouldgracefully indicate its limitations to
its users when it encountersNAXIS= 1 orNAXIS= 3 cases, while
still providing access to the keyword/value pairs.

FITS files with degenerate axes (i.e., one or more
NAXISn = 1) maybe described as ‘image/fits’, but the first
axesshouldbe non-degenerate (i.e., the degenerate axesshould
be the highest dimensions). An algorithm designed to render
only two-dimensional images will be capable of displaying such
anNAXIS = 3 or NAXIS = 4 FITSarray that has one or two of the
axes consisting of a single pixel, and an application writershould
consider coding this capability into the application. Writers of
new applications that generateFITS files intended to be de-
scribed as ‘image/fits’ shouldconsider using theWCSAXES
keyword (Greisen et al. 2006) to declare the dimensionalityof
such degenerate axes, so thatNAXIS can be used to convey the
number of non-degenerate axes.

G.3. File extensions

TheFITSStandard originated in the era when files were stored
and exchanged via magnetic tape; it does not prescribe any
nomenclature for files on disk. Various sites within theFITS
community have long-established practices where files are pre-
sumed to beFITSby context. File extensions used at such sites
commonly indicate content of the file instead of the data format.

In the absence of other information it is reasonably safe to
presume that a file name ending in ‘.fits’ is intended to be
a FITS file. Nevertheless, there are other commonly used ex-
tensions; e.g., ‘.fit’, ‘ .fts’, and many others not suitable for
listing in a media type registration.

Appendix H: Past changes or clarifications to the
formal definition of FITS

This appendix is not part of the FITS Standard, but is included
for informational purposes.

H.1. Differences between the requirements in this Standard
and the requirements in the original FITS papers.

1. Sect. 4.1.2: The originalFITS definition paper (Wells et al.
1981) disallows lower-case letters in the keyword name, but
does not specify what other characters may or may not ap-
pear in the name.

2. Sect. 4.1.2: The slash between the value and comment is
‘recommended’ in the original paper (Wells et al. 1981)
whereas the Standard requires that it be present, which is
consistent with the prescription of Fortran list-directedinput.

3. Sect. 4.2: The original paper (Wells et al. 1981) speculated
thatFITSwould eventually support the full range of flexibil-
ity that is allowed by Fortran list-directed input, including di-
mensioned parameters. The Standard restricts the value field
to a single value, not an array.

4. Sect. 4.2.5 and Sect. 4.2.6: The original paper (Wells et al.
1981) defined a fixed format for complex keyword values,
with the real part right justified in Bytes 11 through 30 and
the imaginary part right justified in Bytes 31 through 50.
There are no knownFITSfiles that use this fixed format.
The Standard does not define a fixed format for complex
keyword values. Instead, complex values are represented in

conformance with the rules for Fortran list-directed input,
namely, with the real and imaginary parts separated by a
comma and enclosed in parentheses.

5. Sect. 4.4.1.1 and Sect. 4.4.1.2: The paper that defines gen-
eralized extensions (Grosbøl et al. 1988) does not prohibit
the appearance of theSIMPLE keyword in extensions nor the
XTENSION keyword in the primary header.

H.2. List of modification to the FITS Standard, Version 3.0

After the IAUFWG officially approved Version 3.0 of theFITS
Standard in 2008, the following additional corrections, clarifica-
tions, or format modifications have been made to the document.

1. Two typographical errors in Table 21 (previously Table 8.1)
were corrected. The last two lines of the third column should
read ‘LONPOLEa (= PVi 3a)’ and ‘LATPOLEa (= PVi 4a)’),
instead ofPVi 1a andPVi 2a, respectively. (October 2008)

2. The LATEX text source document was reformatted to conform
to the Astronomy & Astrophysics journal page style (June
2010). The visible changes include the following.
– The tables, figures, equations, and footnotes are num-

bered sequentially throughout the entire the document,
instead of sequentially within each chapter.

– The citations use the standard ‘Author (year)’ format in-
stead of being referenced by a sequential number. Also,
the ‘Bibliography’ section at the end of the document has
been replaced by a ‘References’ section in which the ci-
tations are listed alphabetically by author.

3. The following minor corrections or clarifications were made
during the refereeing process after submitting Version 3.0
of the FITS Standard for publication in the Astronomy &
Astrophysics journal (July 2010).
– A sentence was added to the end of Sect. 1.2: ‘This

website also contains the contact information for the
Chairman of the IAUFWG, to whom any questions or
comments regarding this Standard should be addressed.’

– A ‘Section’ column was added to Table 1 to reference the
relevant section of the document.

– The wording of the second sentence in Sect. 4.1.1 was
revised from ‘Except where specifically stated otherwise
in this standard, keywords may appear in any order.’ to
‘Keywords may appear in any order except where specif-
ically stated otherwise in this Standard.’

– A sentence was added to the end of the ‘Keyword name’
subsection in Sect. 4.1.2: ‘Note that keyword names that
begin with (or consist solely of) any combination of hy-
phens, underscores, and digits are legal.’

– A footnote to the description of theREFERENC key-
word in Sect. 4.4.2 was added: ‘This bibliographic con-
vention (Schmitz 1995) was initially developed for use
within NED (NASA/IPAC Extragalactic Database) and
SIMBAD (operated at CDS, Strasbourg, France).’

– In Sect. 7.3.4, the phrase ‘TFORMn format code’ was cor-
rected to read ‘TDISPn format code’ (in four places).

– The wording in the ‘Expressed as’ column in Table 26
for theLOG, GRI, GRA, andTAB spectral algorithm codes
was clarified.

– In Table C.2 theEXTNAME, EXTVER, andEXTLEVEL key-
words were moved under the ‘All HDUs’ column be-
cause they are now allowed in the primary array header.

61

– The last paragraph of Sect. 4.1.2.3 was corrected to state
that the ASCII-text characters have hexadecimal values
20 through 7E, not 41 through 7E.

H.3. List of modifications to the latest FITS Standard

1. The representation of time coordinates has been incorpo-
rated by reference from Rots et al. (2015) and is summa-
rized in Sect. 9. Cross-references have been inserted in pre-
existing sections of the Standard (namely in Sects. 4.2.7,
4.3, 4.4.2.1, 4.4.2.2 and 5.4, as well as in various places of
Sect. 8, such as Sect. 8.3 and Sect. 8.4.1). New keywords are
listed in a rearranged Table 22. Contextually an erratum was
applied in Sect. 8.4.1: keywordsOBSGEO-[XYZ]were incor-
rectly marked asOBSGEO-[XYZ]a; the TAI-UTC difference
in Table 30 was updated with respect to Rots et al. (2015)
taking into account the latest leap second; the possibilityof
introducing more sources for the Solar System ephemerides
was re-worded (at the end of Sect.9.2.5 and in Table 31).

2. The continued string keywords described in Sect. 4.2.1.2
were originally introduced as aFITS convention during
1994, and registered in 2007. The text of the original
convention is reported athttp://fits.gsfc.nasa.gov/
registry/continue_keyword.html. The differences
with this Standard concern the following.

– In the convention, theLONGSTRN keyword was used
to signal the possible presence of long strings in the
HDU. The use of this keyword is no longerrequiredor
recommended.

– Usage of the convention wasnot recommendedfor re-
served or mandatory keywords. Now it isexplicitly for-
bidden unless keywords are explicitly declared long-
string.

– To avoid ambiguities in the application of the previous
clause, the declaration of string keywords in Sects. 8,
9 and 10 has been reset from the generic ‘character’ to
‘string’.

– It is also explicitly clarified there is no limit to the num-
ber of continuation records.

– The description of continued comment field is new.

3. The blank header space convention described in Sect. 4.4.2.4
was used from 1996, and registered in 2014. The text of
the original convention is reported athttp://fits.gsfc.
nasa.gov/registry/headerspace.html. It included a
recommendationabout using the convention in a controlled
environment, which does not appear in this Standard.

4. The INHERIT keyword described in Sect. 4.4.2.6 was
originally introduced as aFITS convention in 1995, and
registered in 2007. The text of the original convention
is reported athttp://fits.gsfc.nasa.gov/registry/
inherit.html. See also references and practical consider-
ations therein. The differences with the present document
concern a more-precise RFC 2119 compliant wording in a
couple of sentences in Appendix K.

5. The checksum keywords described in Sect. 4.4.2.7 were
originally introduced as aFITS convention during 1994,
and registered in 2007. The text of the original convention
is reported athttp://fits.gsfc.nasa.gov/registry/
checksum.html. The differences with this Standard con-
cern:

– the omission of some additional implementation guide-
lines, and

– the omission of a discussion on alternate algorithms and
relevant additional references.

6. The table keywords described in Sect. 7.2.2 and 7.3.2 were
originally introduced as aFITS convention during 1993,
and registered in 2006. The text of the original convention
is reported athttp://fits.gsfc.nasa.gov/registry/
colminmax.html. The differences with this Standard are as
follows.
– The exclusion of undefined or IEEE special values when

computing maximum and minimum is nowmandatory
while it wasoptional.

– The original text included the possibility of using the fact
TDMINn were greater thanTDMAXn (or TLMINn greater
thanTLMAXn) as an indication the values were undefined.
This clause has been removed

– The original text contained usage examples and addi-
tional minor explanatory details.

7. The Green Bank convention, mentioned in Sect. 8.2 and de-
scribed in Appendix L, has been in use since 1989, and
was registered in 2010. The text of the registered convention
is reported athttp://fits.gsfc.nasa.gov/registry/
greenbank/greenbank.pdf and contains some additional
details about the history of the convention.

8. The conventions for compressed data described in Sect. 10.
were originally introduced as a couple ofFITS conven-
tions registered in 2007 and 2013. The text of the origi-
nal conventions is reported athttp://fits.gsfc.nasa.
gov/registry/tilecompression.html for compressed
images and athttp://fits.gsfc.nasa.gov/registry/
tiletablecompression.html for compressed binary ta-
bles. The differences with this Standard are listed below.
– In Sect. 10.3.3 the original text forFZALGn mentioned

the possibility that, ‘If the column cannot be compressed
with the requested algorithm (e.g., if it has an inappropri-
ate data type), then a default compression algorithm will
be used instead.’ But there is no default algorithm. This
is irrelevant for the Standard.

– In Sect. 10.4 the alias’RICE ONE’ is not adopted in the
Standard as a synonym for’RICE 1’.

– In Sect. 10.4.3 a sentence was left out about requiring
additional instructions in PLIO to make it work for more
then 212 bits, since we aren’t allowing this possibility in
the Standard.

– In Sect. 10.4.4 the reference to a ‘smoothing flag’ was
dropped.

– Also in Sect. 10.4.4 thescale factoris now floating point,
while it was originally integer.

– In Table 36 (and Sect. 10.3.5) the’NOCOMPRESS’ algo-
rithm is explicitly mentioned.

H.4. List of modifications for language editing

1. Apply systematically LATEX macros for keyword names and
values, and for RFC 2119 expressions, according to instruc-
tions reported in the LATEX source preamble (for future edi-
tors of the Standard).

2. The acronymFITS is always indicated in italics.
3. Use italics systematically for RFC 2119 obligations and rec-

ommendations.

62

http://fits.gsfc.nasa.gov/registry/continue_keyword.html
http://fits.gsfc.nasa.gov/registry/continue_keyword.html
http://fits.gsfc.nasa.gov/registry/headerspace.html
http://fits.gsfc.nasa.gov/registry/headerspace.html
http://fits.gsfc.nasa.gov/registry/inherit.html
http://fits.gsfc.nasa.gov/registry/inherit.html
http://fits.gsfc.nasa.gov/registry/checksum.html
http://fits.gsfc.nasa.gov/registry/checksum.html
http://fits.gsfc.nasa.gov/registry/colminmax.html
http://fits.gsfc.nasa.gov/registry/colminmax.html
http://fits.gsfc.nasa.gov/registry/greenbank/greenbank.pdf
http://fits.gsfc.nasa.gov/registry/greenbank/greenbank.pdf
http://fits.gsfc.nasa.gov/registry/tilecompression.html
http://fits.gsfc.nasa.gov/registry/tilecompression.html
http://fits.gsfc.nasa.gov/registry/tiletablecompression.html
http://fits.gsfc.nasa.gov/registry/tiletablecompression.html

4. Apply consistent use of italic and typewriter fonts, and’

quotation marks around literal keyword values. Correct other
minor LATEX issues.

5. Apply systematic capitalization of the names of specific enti-
ties, where appropriate. These include Standard (when refer-
ring to theFITS Standard document), Version (where num-
bered), Byte, Column, Parameter, Field, and Axis. Start some
words with a lower-case letter that previously began with a
capital letter.

6. Address other typographical issues, such as the insertion of
commas in several places, adding a few non-breaking spaces,
and better handling of references to sections, etc.

7. Several cases of minor rewording.
8. Express small numbers in letter form (one to nine), not in nu-

merals (1 to 9), wherever sensible. However, there is the cus-
tomary exception for normalization in sentences and head-
ings that also contain numbers greater than nine.

9. Compound nouns are systematically hyphenated to high-
light the correct grouping (and hence meaning) of the com-
ponents. This includes the attributive references to ASCII-
table, binary-table, and random-groups.

10. Improve the aesthetics of some tables.

Appendix I: Random-number generator

This appendix is not part of the FITS Standard, but is included
for informational purposes.

The portable random-number generator algorithm below is
from Park & Miller (1988). This algorithm repeatedly evaluates
the function

seed= (a ∗ seed) modm

where the values ofa andm are shown below, but it is imple-
mented in a way to avoid integer overflow problems.

int random_generator(void) {

/* initialize an array of random numbers */

int ii;

double a = 16807.0;

double m = 2147483647.0;

double temp, seed;

float rand_value[10000];

/* initialize the random numbers */

seed = 1;

for (ii = 0; ii < N_RANDOM; ii++) {

temp = a * seed;

seed = temp -m * ((int) (temp / m));

/* divide by m for value between 0 and 1 */

rand_value[ii] = seed / m;

}

}

If implemented correctly, the 10 000th value of seed will
equal 1 043 618 065.

Appendix J: CHECKSUM implementation guidelines

This appendix is not part of the FITS Standard, but is included
for informational purposes.

J.1. Recommended CHECKSUM keyword implementation

TherecommendedCHECKSUM keyword algorithm described here
generates a 16-character ASCII string that forces the 32-bit ones’
complement checksum accumulated over the entireFITS HDU
to equal negative 0 (all 32 bits equal to 1). In addition, thisstring
will only contain alphanumeric characters within the ranges 0–9,
A–Z, and a–z to promote human readability and transcription.
If the present algorithm is used, theCHECKSUM keyword value
mustbe expressed in fixed format, with the starting single-quote
character in Column 11 and the ending single-quote character
in Column 28 of theFITSkeyword record, because the relative
placement of the value string within the keyword record affects
the computed HDU checksum. The steps in the algorithm are as
follows.

1. Write the CHECKSUM keyword into the HDU header
with an initial value consisting of 16 ASCII zeros
(’0000000000000000’) where the first single-quote char-
acter is in Column 11 of theFITS keyword record. This
specific initialization string isrequiredby the encoding al-
gorithm described in Sect. J.2. The final comment field of
the keyword, if any,must also be written at this time. It
is recommendedthat the current date and time be recorded
in the comment field to document when the checksum was
computed.

2. Accumulate the 32-bit ones’ complement checksum over the
FITS logical records that make up the HDU header in the
same manner as was done for the data records by interpret-
ing each 2880-byte logical record as 720 32-bit unsigned in-
tegers.

3. Calculate the checksum for the entire HDU by adding (us-
ing ones’ complement arithmetic) the checksum accumu-
lated over the header records to the checksum accumulated
over the data records (i.e., the previously computedDATASUM

keyword value).
4. Compute the bit-wise complement of the 32-bit total HDU

checksum value by replacing all 0 bits with 1 and all 1 bits
with 0.

5. Encode the complement of the HDU checksum into a 16-
character ASCII string using the algorithm described in
Sect. J.2

6. Replace the initialCHECKSUM keyword value with this 16-
character encoded string. The checksum for the entire HDU
will now be equal to negative 0.

J.2. Recommended ASCII encoding algorithm

The algorithm described here is used to generate an ASCII
string, which, when substituted for the value of theCHECKSUM

keyword, will force the checksum for the entire HDU to equal
negative 0. It is based on a fundamental property of ones’ com-
plement arithmetic that the sum of an integer and the negation
of that integer (i.e, the bitwise complement formed by replacing
all 0 bits with 1s and all 1 bits with 0s) will equal negative 0
(all bits set to 1). This principle is applied here by constructing a
16-character string, which, when interpreted as a byte stream of
four 32-bit integers, has a sum that is equal to the complement of
the sum accumulated over the rest of the HDU. This algorithm
also ensures that the 16 bytes that make up the four integers all
have values that correspond to ASCII alpha-numeric characters
in the range 0–9, A–Z, and a–z.

63

Fig. J.1: Only ASCII alpha-numeric characters are used to en-
code the checksum – punctuation is excluded

222

0 30 1 31 2 32 3 33 4 34 5 35 6 36 7 37 8 38 9 39

: 3a ; 3b < 3c = 3d > 3e ? 3f @ 40 A 41 B 42 C 43

D 44 E 45 F 46 G 47 H 48 I 49 J 4a K 4b L 4c M 4d

N 4e O 4f P 50 Q 51 R 52 S 53 T 54 U 55 V 56 W 57

X 58 Y 59 Z 5a [5b \ 5c] 5d ^ 5e _ 5f ‘ 60 a 61

b 62 c 63 d 64 e 65 f 66 g 67 h 68 i 69 j 6a k 6b

l 6c m 6d n 6e o 6f p 70 q 71 r 72

Figure 1. Only ASCII alpha-numerics are used to encode the checksum — punctuation is excluded.2221
1
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1

11
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1
1
1
1
1
1
1
1

1. Begin with the ones’ complement (replace 0s with 1s and
1s with 0s) of the 32-bit checksum accumulated over all the
FITSrecords in the HDU after first initializing theCHECKSUM
keyword with a fixed-format string consisting of 16 ASCII
zeros (’0000000000000000’).

2. Interpret this complemented 32-bit value as a sequence of
four unsigned eight-bit integers,A, B, C, andD, whereA is
the most-significant byte andD is the least-significant byte.
Generate a sequence of four integers,A1, A2, A3, A4, that
are all equal toA divided by 4 (truncated to an integer if nec-
essary). IfA is not evenly divisible by 4, add the remainder
to A1. The key property to note here is that the sum of the
four new integers is equal to the original byte value (e.g.,
A = A1+ A2+ A3+ A4). Perform a similar operation onB,
C, andD, resulting in a total of 16 integer values, four from
each of the original bytes, whichshouldbe rearranged in the
following order:

A1 B1 C1 D1 A2 B2 C2 D2 A3 B3 C3 D3 A4 B4 C4 D4.

Each of these integers represents one of the 16 characters
in the finalCHECKSUM keyword value. Note that if this byte
stream is interpreted as four 32-bit integers, the sum of the
integers is equal to the original complemented checksum
value.

3. Add 48 (hex 30), which is the value of an ASCII zero char-
acter, to each of the 16 integers generated in the previous
step. This places the values in the range of ASCII alphanu-
meric characters ’0’ (ASCII zero) to ’r’. This offset is effec-
tively subtracted back out of the checksum when the initial
CHECKSUM keyword value string of 16 ASCII 0s is replaced
with the final encoded checksum value.

4. To improve human readability and transcription of the string,
eliminate any non-alphanumeric characters by considering
the bytes a pair at a time (e.g.,A1+ A2, A3+ A4, B1+ B2,
etc.) and repeatedly increment the first byte in the pair by 1
and decrement the second byte by 1 as necessary until they
both correspond to the ASCII value of the allowed alphanu-
meric characters 0–9, A–Z, and a–z shown in Figure J.1.
Note that this operation conserves the value of the sum of
the four equivalent 32-bit integers, which is required for use
in this checksum application.

5. Cyclically shift all 16 characters in the string one placeto the
right, rotating the last character (D4) to the beginning of the
string. This rotation compensates for the fact that the fixed
formatFITScharacter-string values are not aligned on four-
byte word boundaries in theFITS file. (The first character
of the string starts in Column 12 of the header card image,
rather than Column 13).

6. Write this string of 16 characters to the value of the
CHECKSUM keyword, replacing the initial string of 16 ASCII
zeros.

To invert the ASCII encoding, cyclically shift the 16 char-
acters in the encoded string one place to the left, subtract the
hex 30 offset from each character, and calculate the checksum
by interpreting the string as four 32-bit unsigned integers. This
can be used, for instance, to read the value ofCHECKSUM into the
software when verifying or updating a HDU.

J.3. Encoding example

This example illustrates the encoding algorithm given in
Sect. J.2 Consider aFITSHDU whose ones’ complement check-
sum is 868229149, which is equivalent to hex33C0201D. This
number was obtained by accumulating the 32-bit checksum
over the header and data records using ones’ complement arith-
metic after first initializing theCHECKSUM keyword value to
’0000000000000000’. The complement of the accumulated
checksum is 3426738146, which is equivalent to hexCC3FDFE2.
The steps needed to encode this hex value into ASCII are shown
schematically below.

Byte Preserve byte alignment

A B C D A1 B1 C1 D1 A2 B2 C2 D2 A3 B3 C3 D3 A4 B4 C4 D4

CC 3F DF E2 -> 33 0F 37 38 33 0F 37 38 33 0F 37 38 33 0F 37 38

+ remainder 0 3 3 2

= hex 33 12 3A 3A 33 0F 37 38 33 0F 37 38 33 0F 37 38

+ 0 offset 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30

= hex 63 42 6A 6A 63 3F 67 68 63 3F 67 68 63 3F 67 68

ASCII c B j j c ? g h c ? g h c ? g h

Eliminate punctuation characters

initial values c B j j c ? g h c ? g h c ? g h

. c C j j c > g h c @ g h c > g h

. c D j j c = g h c A g h c = g h

. c E j j c < g h c B g h c < g h

. c F j j c ; g h c C g h c ; g h

. c G j j c : g h c D g h c : g h

final values c H j j c 9 g h c E g h c 9 g h

final string "hcHjjc9ghcEghc9g" (rotate 1 place to the right)

In this example ByteB1 (originally ASCII B) is shifted
higher (to ASCIIH) to balance ByteB2 (originally ASCII ?)
being shifted lower (to ASCII9). Similarly, BytesB3 andB4
are shifted by opposing amounts. This is possible because the
two sequences of ASCII punctuation characters that can occur
in encoded checksums are both preceded and followed by longer
sequences of ASCII alphanumeric characters. This operation is
purely for cosmetic reasons to improve readability of the final
string.

This is how theseCHECKSUM andDATASUM keywords would
appear in aFITS header (with the recommended time stamp in
the comment field).

DATASUM = '2503531142' / 2015-06-28T18:30:45

CHECKSUM= 'hcHjjc9ghcEghc9g' / 2015-06-28T18:30:45

J.4. Incremental updating of the checksum

The symmetry of ones’ complement arithmetic also means that
after modifying aFITS HDU, the checksummaybe incremen-
tally updated using simple arithmetic without accumulating the
checksum for portions of the HDU that have not changed. The

64

new checksum is equal to the old total checksum plus the check-
sum accumulated over the modified records, minus the original
checksum for the modified records.

An incremental update provides the mechanism for end-to-
end checksum verification through any number of intermediate
processing steps. Bycalculatingrather thanaccumulatingthe in-
termediate checksums, the original checksum test is propagated
through to the final data file. On the other hand, if a new check-
sum is accumulated with each change to the HDU, no informa-
tion is preserved about the HDU’s original state.

The recipe for updating theCHECKSUM keyword following
some change to the HDU is:C′ = C − m + m′, whereC
andC′ represent the HDU’s checksum (that is, the complement
of the CHECKSUM keyword) before and after the modification
and m and m′ are the corresponding checksums for the mod-
ified FITS records or keywords only. Since theCHECKSUM key-
word contains the complement of the checksum, the correspond-
ingly complemented form of the recipe is more directly useful:
˜C′ = ˜(C+ ˜m+m′), where ˜ (tilde) denotes the (ones’) comple-
ment operation. See Braden et al. (1988); Mallory & Kullberg
(1990); Rijsinghani (1994). Note that the tilde on the righthand
side of the equation cannot be distributed over the contentsof the
parentheses due to the dual nature of zero in ones’ complement
arithmetic (Rijsinghani 1994).

J.5. Example C code for accumulating the checksum

The ones’ complement checksum is simple and fast to com-
pute. This routine assumes that the input records are a multi-
ple of four bytes long (as is the case forFITS logical records),
but it is not difficult to allow for odd length records if neces-
sary. To use this routine, first initialize theCHECKSUM keyword
to ’0000000000000000’ and initializesum32 = 0, then step
through all theFITS logical records in theFITSHDU.

void checksum (

unsigned char *buf, /* Input array of bytes to be checksummed */

/* (interpret as 4-byte unsigned ints) */

int length, /* Length of buf array, in bytes */

/* (must be multiple of 4) */

unsigned int *sum32) /* 32-bit checksum */

{

/*

Increment the input value of sum32 with the 1's complement sum

accumulated over the input buf array.

*/

unsigned int hi, lo, hicarry, locarry, i;

/* Accumulate the sum of the high-order 16 bits and the */

/* low-order 16 bits of each 32-bit word, separately. */

/* The first byte in each pair is the most significant. */

/* This algorithm works on both big and little endian machines.*/

hi = (*sum32 >> 16);

lo = *sum32 & 0xFFFF;

for (i=0; i < length; i+=4) {

hi += ((buf[i] << 8) + buf[i+1]);

lo += ((buf[i+2] << 8) + buf[i+3]);

}

/* fold carry bits from each 16 bit sum into the other sum */

hicarry = hi >> 16;

locarry = lo >> 16;

while (hicarry || locarry) {

hi = (hi & 0xFFFF) + locarry;

lo = (lo & 0xFFFF) + hicarry;

hicarry = hi >> 16;

locarry = lo >> 16;

}

/* concatenate the full 32-bit value from the 2 halves */

*sum32 = (hi << 16) + lo;

}

J.6. Example C code for ASCII encoding

This routine encodes the complement of the 32-bit HDU check-
sum value into a 16-character string. The byte alignment of the
string is permuted one place to the right forFITS to left justify
the string value starting in Column 12.

unsigned int exclude[13] = {0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f, 0x40,

0x5b, 0x5c, 0x5d, 0x5e, 0x5f, 0x60 };

int offset = 0x30; /* ASCII 0 (zero) */

unsigned long mask[4] = { 0xff000000, 0xff0000, 0xff00, 0xff };

void char_encode (

unsigned int value, /* 1's complement of the checksum */

/* value to be encoded */

char *ascii) /* Output 16-character encoded string */

{

int byte, quotient, remainder, ch[4], check, i, j, k;

char asc[32];

for (i=0; i < 4; i++) {

/* each byte becomes four */

byte = (value & mask[i]) >> ((3 - i) * 8);

quotient = byte / 4 + offset;

remainder = byte % 4;

for (j=0; j < 4; j++)

ch[j] = quotient;

ch[0] += remainder;

for (check=1; check;) /* avoid ASCII punctuation */

for (check=0, k=0; k < 13; k++)

for (j=0; j < 4; j+=2)

if (ch[j]==exclude[k] || ch[j+1]==exclude[k]) {

ch[j]++;

ch[j+1]--;

check++;

}

for (j=0; j < 4; j++) /* assign the bytes */

asc[4*j+i] = ch[j];

}

for (i=0; i < 16; i++) /* permute the bytes for FITS */

ascii[i] = asc[(i+15)%16];

ascii[16] = 0; /* terminate the string */

}

Appendix K: Header inheritance convention

This appendix is not part of the FITS Standard, but is included
for informational purposes.

The reserved BooleanINHERIT keyword described in
Sect. 4.4.2.6 isoptional, but if present itshall appear in the
extension header immediately after the mandatory keywords.
The INHERIT keywordmust notappear in the primary header.
Keyword inheritance provides a mechanism to store keywordsin
the primary HDU, and have them be shared by one or more ex-
tensions in the file. This mechanism minimizes duplication (and
maintenance) of metadata in multi-extensionFITSfiles.

It shouldonly be used inFITSfiles that have a null primary
array (e.g., withNAXIS= 0). to avoid possible confusion if array-
specific keywords (e.g.,BSCALE andBZERO) were to be inher-
ited.

When an application reads an extension header with
INHERIT = T, it shouldmerge the keywords in the current ex-
tension with the primary header keywords. The exact merging
mechanism is left up to the application. The mandatory primary
array keywords (e.g.,BITPIX, NAXIS, and NAXISn) and any
COMMENT, HISTORY, and blank keywords in the primary header
must notbe inherited. It is assumed also that the table-specific
keywords described in Sect. 7.2 and 7.3, and the table-specific

65

WCS keywords described in Sect. 8, cannot be inherited since
they will never appear in the primary header. If the same key-
word is present in both the primary header and the extension
header, the value in the extension headershall take precedence.
If INHERIT = F in an extension header, the keywords from the
primary headershould notbe inherited.

An application that merely reads aFITSfile is authorized by
INHERIT = T to look in the primary HDU for an expected key-
word not found in the current HDU. However if the application
writes out a modified file, it has to be very careful to avoid un-
wanted duplication of keywords, and preserve the separation of
primary and extension headers. If an application modifies the
value of an inherited keyword while processing an extension
HDU, then it is recommendedto write the modified value of
that keyword into the extension header, leaving the value ofthe
keyword in the primary header unchanged. The primary array
keywordsshouldonly be modified when the intent is to explic-
itly change the value that will subsequently be inherited inthe
extensions.

Also if theFITSfile is read in sequentially (e.g., from tape or
Internet downloads), the reader would need to cache the primary
header in case it turns out that a later extension in the file uses
theINHERIT keyword.

Appendix L: Green Bank convention

This appendix is not part of the FITS Standard, but is included
for informational purposes.

The Green Bank convention was developed at a meeting in
October 1989 at the US National Radio Astronomy Observatory
in Green Bank, West Virginia, to discuss the use ofFITS for
single-dish radio-astronomy data, and has since been widely
used in conjunction with the SDFITS convention16. It was de-
vised primarily to record WCS keywords independently for each
row of a table containing an image array column, but subse-
quently it has found more-general application.

The basic idea is that of expanding header keywords into
binary-table columns, and vice versa, of collapsing unvarying
binary-table columns into header keywords.

For example, the standard header keywordDATE-OBS, which
records the date and time of observation, could be expanded into
a column withTTYPEn = ’DATE-OBS’ to record the date and
time independently for each row of a binary table. Conversely,
a binary-table column withTTYPEn= ’HUMIDITY’ containing
the same value in each row, could be collapsed into a keyword,
HUMIDITY, that recorded the constant value.

When the Green Bank convention is used (and arguably oth-
erwise), a keywordshould notcoexist with a column of the same
name within a single binary table. Should this situation occur,
the column value takes precedence over the keyword.

When expanding keywords into columns, the Green Bank
convention applies to allFITS keywords that may ap-
pear in a binary table except for the following, most of
which describe the structure or identity of a binary table
HDU: XTENSION, BITPIX, NAXIS, NAXISn, PCOUNT, GCOUNT,
TFIELDS, EXTNAME, EXTVER, EXTLEVEL, TTYPEn, TFORMn,
TUNITn, TSCALn, TZEROn, TNULLn, TDISPn, THEAP, TDIMn,
DATE, ORIGIN, COMMENT, HISTORY, CONTINUE, andEND.

In order to collapse a column into a keyword, the name of the
column (given byTTYPEn) mustbe a valid keyword name, and

16 http://fits.gsfc.nasa.gov/registry/sdfits.html

the column’s constant valuemustbe amenable to representation
as a valid keyvalue.

Software that implements the Green Bank conventionmust
take into account the possibility that any “keyword” (apartfrom
those on the proscribed list), such asDATE-OBS, may change
value from row to row of a table. Moreover, when searching the
header for a particular keyword, it must first consider the val-
ues of theTTYPEn keywords in case the desired keyword has
been expanded as a column. Likewise, it must consider each
header keyword potentially as a collapsed column, so that a
request for the value in a particular row or rows of the non-
existentHUMIDITY column would be satisfied by the value of
theHUMIDITY keyword.

References
Note: Many of theseFITS references are available electronically from the

NASA Astrophysics Data System (ADS) and/or the FITS Support Office
websites at
http://adswww.harvard.edu and
http://fits.gsfc.nasa.gov/fits_documentation.html.

Allen, S. & Wells, D. 2005, IETF RFC 4047,
http://www.ietf.org/rfc/rfc4047.txt

ANSI 1977,American National Standard for Information Processing: Code for
Information Interchange, ANSI X3.4–1977 (ISO 646) New York: American
National Standards Institute, Inc.

Braden, R. T., Borman, D.A., and Partridge, C. 1988 ACM Computer
Communication Review, 19, no. 2, 86, IETF RFC 1071,
https://tools.ietf.org/html/rfc1071

Bradner, S. 1997, IETF RFC 2119,http://www.ietf.org/rfc/rfc2119.
txt

Bunclark, P. & Rots, A. 1997,Precise re-definition ofDATE-OBS Keyword en-
compassing the millennium,
http://fits.gsfc.nasa.gov/year2000.html

Calabretta, M. R. & Greisen, E. W. 2002, A&A, 395, 1077
Calabretta, M. R. & Roukema, B. F. 2007, MNRAS, 381, 865
Cotton, W. D., Tody, D. B., & Pence, W. D. 1995, A&AS, 113, 159
Cotton, W. D., et al. 1990,Going AIPS: A Programmer’s Guide to the NRAO

Astronomical Image Processing System, Charlottesville: NRAO
Deutsch P. 1996, RFC 1951, Network Working Group; availableonline:

http://tools.ietf.org/html/rfc1951

Folkner, W. M., Williams, J. G., & Boggs, D. H. 2009, Interplanetary Network
Progress Report 42-178, available online:http://tmo.jpl.nasa.gov/

progress_report/42-178/178C.pdf

Folkner, W. M. et al. 2014, Interplanetary Network ProgressReport 42-
196, available online:http://ipnpr.jpl.nasa.gov/progress_report/
42-196/196C.pdf

Greisen, E. W. & Calabretta, M. R. 2002, A&A, 395, 1061
Greisen, E. W., Calabretta, M. R., Valdes, F. G., & Allen, S. L. 2006, A&A, 446,

747
Greisen, E. W. & Harten, R. H. 1981, A&AS, 44, 371
Grosbøl, P., Harten, R. H., Greisen, E. W., & Wells, D. C. 1988, A&AS, 73, 359
Grosbøl, P. & Wells, D. C. 1994,Blocking of Fixed-block Sequential Media and

Bitstream Devices, http://fits.gsfc.nasa.gov/blocking94.html
Hanisch, R., et al. 2001, A&A, 376, 359
Harten, R. H., Grosbøl, P., Greisen, E. W., & Wells, D. C. 1988, A&AS, 73, 365
IAU 1983,Transactions of the IAU, XVIIIB, 45
IAU 1988,Transactions of the IAU, XXB, 51
IAU 1997, Resolution B1 of the XXIIIrd General Assembly – Transactions of the

IAU Vol. XXIII B, Ed. J. Andersen, (Dordrecht: Kluwer). Available online:
http://www.iau.org/static/resolutions/IAU1997 French.pdf

IEEE 1985,American National Standard – IEEE Standard for Binary Floating
Point Arithmetic, ANSI/IEEE 754–1985, New York: American National
Standards Institute, Inc.

Irwin, A. W. & Fukushima, T. A. 1999, A&A348, 642
ISO 2004,Information technology – Programming languages – Fortran, ISO/

IEC 1539-1:2004, Geneva: International Organization for Standardization
ISO 2004b, International Standard ISO 8601:2004(E),Data elements and in-

terchange formats – Information interchange – Representation of dates and
times

66

http://fits.gsfc.nasa.gov/registry/sdfits.html
http://adswww.harvard.edu
http://fits.gsfc.nasa.gov/fits_documentation.html
http://www.ietf.org/rfc/rfc4047.txt
https://tools.ietf.org/html/rfc1071
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2119.txt
http://fits.gsfc.nasa.gov/year2000.html
http://tools.ietf.org/html/rfc1951
http://tmo.jpl.nasa.gov/progress_report/42-178/178C.pdf
http://tmo.jpl.nasa.gov/progress_report/42-178/178C.pdf
http://ipnpr.jpl.nasa.gov/progress_report/42-196/196C.pdf
http://ipnpr.jpl.nasa.gov/progress_report/42-196/196C.pdf
http://fits.gsfc.nasa.gov/blocking94.html

NASA/JPL Planetary Ephemerides 2014a, available online:http://ssd.jpl.

nasa.gov/?ephemerides

NASA/JPL Solar and Planetary Ephemerides 2014b, available online: http://
ssd.jpl.nasa.gov/?planet_eph_export

Mallory, T. & Kullberg, A. 1990, IETF RFC 1141,
https://tools.ietf.org/html/rfc1141

McNally, D., ed. 1988,Transactions of the IAU, Proceedings of the Twentieth
General Assembly(Dordrecht: Kluwer)

Park, X. & Miller, X. 1988, Comm. ACM, 31, Issue 10, 1192; available online:
http://dl.acm.org/citation.cfm?id=63042

Pence, W. D., Seaman, R., & White, R. L. 2009, PASP, 121, 414
Pence, W. D., Chiappetti, L., Page, C. G., Shaw, R. A., & Stobie, E. 2010, A&A,

524, A42
Pence, W. D., Seaman, R., & White, R. L. 2013,Tiled Table Convention for

Compressing FITS Binary Tables, FITS Support Office; available online:
http://fits.gsfc.nasa.gov/registry/tiletablecompression.

html

Ponz, J. D., Thompson, R. W., & Muñoz, J. R. 1994, A&AS, 105, 53
Rice, R. F., Yeh, P.-S., & Miller, W. H. 1993, in Proc. 9th AIAAComputing in

Aerospace Conf., AIAA-93-4541-CP, American Institute of Aeronautics and
Astronautics

Rijsinghani, A. (ed.) 1994, IETF RFC 1624,
https://tools.ietf.org/html/rfc1624

Rots, A. H., Bunclark, P. S., Calabretta, M. R., Allen, S. L.,Manchester, R. N.
& Thompson, W. T. 2015, A&A, 574, A36

Schmitz, M., et al. 1995,Information&On-line data in Astronomy, eds. D. Egret
& M. A. Albrecht (Kluwer Academic Pub.), 259

Standish, E. M. 1990, A&A, 233, 252
Standish, E. M. 1998, JPL Memo IOM 312.F-98-048
Wells, D. C., Greisen, E. W., & Harten, R. H. 1981, A&AS, 44, 363
Wells, D. C. & Grosbøl, P. 1990,Floating Point Agreement for FITS, http://

fits.gsfc.nasa.gov/fp89.txt

White, R. L. 1992, in Proceedings of the NASA Space and Earth Science Data
Compression Workshop, ed. J. C. Tilton, Snowbird, UT; available online:
https://archive.org/details/nasa_techdoc_19930016742

White, R. L., & Greenfield, P. 1999, in ADASS VIII, ASP Conf. Ser. 172, eds.
D. M. Mehringer, R. L. Plante, & D. A. Roberts (San Francisco:ASP), 125

White, R. L., Greenfield, P., Pence, W., Tody, D. & Seaman, R. 2013, Tiled
Image Convention for Storing Compressed Images in FITS Binary Tables,
FITS Support Office; available online:http://fits.gsfc.nasa.gov/
registry/tilecompression.html

Ziv, J., & Lempel, A. 1977, IEEE Transactions on InformationTheory, 23 (3),
337

67

http://ssd.jpl.nasa.gov/?ephemerides
http://ssd.jpl.nasa.gov/?ephemerides
http://ssd.jpl.nasa.gov/?planet_eph_export
http://ssd.jpl.nasa.gov/?planet_eph_export
https://tools.ietf.org/html/rfc1141
http://dl.acm.org/citation.cfm?id=63042
http://fits.gsfc.nasa.gov/registry/tiletablecompression.html
http://fits.gsfc.nasa.gov/registry/tiletablecompression.html
https://tools.ietf.org/html/rfc1624
http://fits.gsfc.nasa.gov/fp89.txt
http://fits.gsfc.nasa.gov/fp89.txt
https://archive.org/details/nasa_techdoc_19930016742
http://fits.gsfc.nasa.gov/registry/tilecompression.html
http://fits.gsfc.nasa.gov/registry/tilecompression.html

Index

Nbits, 11, 12, 17

angular units, 10, 31
ANSI, 3, 56
ANSI, IEEE, 16, 26
array descriptor, 22–24, 26–29
array size, 11, 12, 17
array value, 3, 4, 14, 20
array, multi-dimensional, 5, 24, 30, 59
array, variable-length, 1, 24, 27–29, 59
ASCII character, 3, 16, 19, 21, 56
ASCII table, 19
ASCII text, 3–5, 7, 13, 21, 25, 56
ASCII, ANSI, 66
AUTHOR, 13

binary table, 4, 16, 22, 54
BITPIX, 11, 12, 14, 16–19, 22
BLANK, 14, 16
blocking, 6
BSCALE, 14, 16
BUNIT, 14
byte order, 5, 16, 26
BZERO, 14, 16

case sensitivity, 6, 7, 10, 20, 23
character string, 3, 7, 21, 24, 25
checksum, 15, 45, 48, 49, 62–65
COMMENT, 6, 13
complex data, 9, 23, 26, 27
compressed binary tables, 48, 54, 62
compressed images, 44, 54, 62
compression algorithms, 44, 49, 50
compression, lossy, 48
conforming extension, 3–5
CONTINUE, 6, 7, 62
coordinate systems, 29

DATAMAX, 14
DATAMIN, 14
DATE, 12, 42
DATE-OBS, 13, 42
DATExxxx, 13, 42
deprecate, 3, 4, 6, 9, 13, 16, 22, 30, 31, 34
dithering, 47
durations, 43

END, 5, 11, 17, 18, 20, 22, 28
EPOCH, 34
EQUINOX, 34
EXTEND, 12
extension, 3–5, 15, 16, 59, 61
extension registration, 5, 11
extension type name, 3, 5, 11, 15
extension, conforming, 3–5
extension, standard, 4, 5
EXTLEVEL, 15
EXTNAME, 15
EXTVER, 15

field, empty, 22, 25, 26
file size, 4
fill, 5, 6, 11, 18, 20, 21, 24, 25, 28
FITS structure, 3, 4, 6, 12
floating-point, 8, 26, 56
floating-point FITS agreement, 67
floating-point, complex, 9, 26
format, data, 16
format, fixed, 7
format, free, 7, 8, 52
format, keywords, 7
Fortran, 5, 19–21, 24, 66

GCOUNT, 12, 17–19, 22
Green Bank convention, 31, 62, 66
group parameter value, 3, 17, 18
GROUPS, 17
GTI tables, 43
Gzip compression, 50

H-compress algorithm, 51
HDU, 4, 11
HDU, extension, 3, 4
HDU, primary, 3–5
header space, preallocation, 14, 62
heap, 4, 12, 22–24, 26, 28
HISTORY, 6, 14
hyphen, 6, 20, 23, 31, 34

IAU, 1, 4, 66
IAU Style Manual, 10, 67
IAUFWG, 1, 4–6, 11, 29, 41, 59
IEEE floating-point, 16
IEEE special values, 4, 14, 16, 56
image extension, 18
INHERIT, 15, 62, 65
INSTRUME, 13
integer, 16-bit, 16, 26
integer, 32-bit, 16, 26
integer, 64-bit, 16, 26
integer, complex, 9
integer, eight-bit, 16, 26
integer, unsigned, 14, 16, 23, 26
ISO-8601 date, 37

JD, 37

keyword record, 5, 6
keyword, commentary, 6, 13
keyword, indexed, 4, 6, 11
keyword, mandatory, 7, 10, 17–19, 22, 54
keyword, new, 16
keyword, order, 11, 17, 19
keyword, required, 4, 10, 11, 17, 18, 22, 44, 48
keyword, reserved, 4, 12, 17, 18, 20, 22, 30, 31, 42, 45, 49,

54
keyword, valid characters, 6

logical value, 8, 25, 26

68

magnetic tape, 6
min and max in columns, keywords, 20, 24, 62
MJD, 37

NaN, IEEE, 16, 26, 56, 57
NAXIS, 4, 5, 11, 12, 17–19, 22
NAXIS1, 17, 19, 21, 22, 24, 25, 28
NAXIS2, 19, 21, 22, 24, 25, 28
NAXISn, 5, 11, 12, 17, 18
NULL, ASCII, 3, 25

OBJECT, 13
OBSERVER, 13
order, byte, 5, 16, 26
order, extensions, 5
order, FITS structures, 4
order, keyword, 6, 11, 17, 19
ORIGIN, 12

PCOUNT, 12, 17–19, 22, 28
phase, 43
physical value, 3, 4, 14, 17, 18, 20, 23
PLIO compression, 50
primary data array, 3–5, 17, 18
primary header, 3, 4, 11, 17
PSCALn, 17, 18
PTYPEn, 17, 18
PZEROn, 17, 18

quantization of data, 46, 63

random groups, 3, 16, 17
random-groups, 14
random-groups array, 17
REFERENC, 13
repeat count, 4, 22, 25
Rice compression, 50

scaling, data, 17, 18, 20, 23
sign bit, 16
sign character, 8, 21
SIMPLE, 5, 11, 17
slash, 7, 10
solar system ephemeris, 41
special records, 3–5
special values, IEEE, 26
standard extension, 4, 5

TABLE, 19
TBCOLn, 19
TDIMn, 24
TDISPn, 20, 24
TELESCOP, 13
TFIELDS, 19, 22
TFORMn, 19, 22, 25, 26, 28
THEAP, 24, 28
time, 12, 13, 34, 36, 37
time keywords, 42
time reference, 38
time reference direction, 40
time reference position, 39
time resolution, 42
time scale, 37, 38

time units, 41
time, universal, 12, 38
timelag, 43
TIMESYS, 37
TNULLn, 20, 21, 24, 26
TSCALn, 20, 23, 28
TTYPEn, 20, 23
TUNITn, 20, 23
two’s complement, 16, 26
TZEROn, 20, 23, 28

underscore, 6, 20, 23
units, 4, 10, 14, 20, 23, 31, 36

value, 6, 7, 12
value, undefined, 7, 14, 16, 20, 21, 24, 60
variable-length array, 1, 24, 27–29, 59
variable-length arrays, compression, 49

WCS, 29
WCS, celestial, 34
WCS, spectral, 34
WCS, timing, 36, 62

XTENSION, 3, 5, 11, 15, 18, 19, 22

69

	Contents
	Introduction
	Brief history of FITS
	Version history of this document
	Acknowledgments

	Definitions, acronyms, and symbols
	Conventions used in this document
	Defined terms

	FITS file organization
	Overall file structure
	Individual FITS Structures
	Primary header and data unit
	Primary header
	Primary data array

	Extensions
	Requirements for conforming extensions
	Standard extensions
	Order of extensions

	Special records (restricted use)
	Physical blocking
	Bit-stream devices
	Sequential media

	Restrictions on changes

	Headers
	Keyword records
	Syntax
	Components

	Value
	Character string
	Logical
	Integer number
	Real floating-point number
	Complex integer number
	Complex floating-point number
	Date

	Units
	Construction of units strings
	Units in comment fields

	Keywords
	Mandatory keywords
	Other reserved keywords
	Additional keywords

	Data representation
	Characters
	Integers
	Eight-bit
	Sixteen-bit
	Thirty-two-bit
	Sixty-four-bit
	Unsigned integers

	IEEE-754 floating point
	Time

	Random-groups structure
	Keywords
	Mandatory keywords
	Reserved keywords

	Data sequence
	Data representation

	Standard extensions
	Image extension
	Mandatory keywords
	Other reserved keywords
	Data sequence

	The ASCII-table extension
	Mandatory keywords
	Other reserved keywords
	Data sequence
	Fields
	Entries

	Binary-table extension
	Mandatory keywords
	Other reserved keywords
	Data sequence
	Data display
	Variable-length arrays
	Variable-length-array guidelines

	World-coordinate systems
	Basic concepts
	World-coordinate-system representations
	Alternative WCS axis descriptions

	Celestial-coordinate-system representations
	Spectral-coordinate-system representations
	Spectral-coordinate reference frames

	Conventional-coordinate types

	Representations of time coordinates
	Time values
	ISO-8601 datetime strings
	Julian and Besselian epochs

	Time coordinate frame
	Time scale
	Time reference value
	Time reference position
	Time reference direction
	Solar System ephemeris

	Time unit
	Time offset, binning, and errors
	Time offset
	Time resolution and binning
	Time errors

	Global time keywords
	Other time-coordinate axes
	Durations
	Recommended best practices
	Global keywords and overrides
	Restrictions on alternate descriptions
	Image time axes

	Representations of compressed data
	Tiled image compression
	Required keywords
	Other reserved keywords
	Table columns

	Quantization of floating-point data
	Dithering algorithms
	Preserving undefined pixels with lossy compression

	Tiled table compression
	Required keywords
	Procedure for table compression
	Compression directive keywords
	Other reserved keywords
	Supported compression algorithms for tables
	Compressing variable-length array columns

	Compression algorithms
	Rice compression
	Gzip compression
	IRAF/PLIO compression
	H-Compress algorithm

	Syntax of keyword records
	Suggested time-scale specification
	Summary of keywords
	ASCII text
	IEEE floating-point formats
	Basic formats
	Single
	Double

	Byte patterns

	Reserved extension type names
	Standard extensions
	Conforming extensions
	Other suggested extension names

	MIME types
	MIME type `application/fits'
	Recommendations for application writers

	MIME type `image/fits'
	Recommendations for application writers

	File extensions

	Past changes or clarifications to the formal definition of FITS
	Differences between the requirements in this Standard and the requirements in the original FITS papers.
	List of modification to the FITS Standard, Version 3.0
	List of modifications to the latest FITS Standard
	List of modifications for language editing

	Random-number generator
	CHECKSUM implementation guidelines
	Recommended CHECKSUM keyword implementation
	Recommended ASCII encoding algorithm
	Encoding example
	Incremental updating of the checksum
	Example C code for accumulating the checksum
	Example C code for ASCII encoding

	Header inheritance convention
	Green Bank convention
	References / Index

